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2 Evolution of Domain-Generality 

Abstract 

For both humans and animals, domain-general mechanisms are fallible but powerful tools 

for attaining evolutionary goals (e.g., resources) in uncertain, novel environments that 

were not recurrent features of the environment of evolutionary adaptedness. Domain-

general mechanisms interact in complex ways with domain-specific, information 

encapsulated modules, most importantly by manipulating information obtained from 

various modules in attempting to solve novel problems. Mechanisms of general 

intelligence, particularly the executive functions of working memory, underlie analogical 

reasoning as well as the decontextualization processes that are central to human thought. 

Although there is a variety of evolved, special purpose learning devices, learning is also 

characterized by domain-general mechanisms able to achieve evolutionary goals by 

making novel and serendipitous associations with environmental cues. 
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The evolution of domain-general mechanisms in intelligence and learning 

Evolutionary psychology is radically at odds with the tradition that domain-

generality is an important component of human cognition. Evolutionary psychologists 

propose the human mind consists predominantly of highly specialized mechanisms 

designed to solve specific problems in the environment of evolutionary adaptedness 

(EEA; Cosmides & Tooby, 1987; Palmer & Palmer, 2002; Pinker, 1994, 1997; 

Shettleworth, 2000; Sperber, 1994; Tooby & Cosmides, 1989, 1992). Though 

evolutionary psychologists acknowledge the existence of domain-general mechanisms as 

a possibility, they have not provided analyses of the evolutionary function of these 

mechanisms or of how they interface with domain-specific ones. Their view is domain-

general mechanisms are inherently weak because “jacks of all trades are masters of none. 

They achieve generality only at the price of broad ineptitude” (Cosmides & Tooby, 2002, 

p. 170). On the contrary, we argue mechanisms of general intelligence and domain-

general learning are powerful tools designed to solve problems not recurrent in the EEA. 

A fundamental premise of evolutionary psychology is that evolutionary 

adaptations equip animals to meet recurrent challenges of the physical, biological and 

social environment. When the environment presents longstanding problems and recurrent 

cues relevant to solving them, the optimal solution is to evolve domain-specific 

mechanisms, or “modules,” specialized to handle specific inputs and generate particular 

solutions. Modules are designed to solve problems in specific domains by mapping 

characteristic inputs onto characteristic outputs (Fodor, 1983, 2000). Their operation is 

mandatory, fast and unconscious. They carry out their operations by consulting a 

proprietary database — information about the domains to which they apply. Modules are 

also information encapsulated. Though information relevant to solving a particular 

problem may be accessible to other parts of the cognitive system, it is not necessarily 

available to a module (Fodor, 1983). 
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The modular view is likely a correct account of how the mind responds to 

recurrent, highly stable patterns of evolutionarily significant information (Geary & 

Huffman, 2002). It is the optimal way of solving problems with a restricted problem 

space — a small range of possible solutions, such as the 3-dimensional structure of the 

physical world (Gallistel, 1990; Shepard, 1994). The stability of the structure of physical 

space favors the evolution of highly modular systems sensitive to the associated 

information (e.g., geometric relations among landmarks; Gallistel, 1990) and highly 

constrained mechanisms for learning about variations in features within this space (Geary 

& Huffman, 2002). 

Nevertheless, we argue domain-specific mechanisms are only part of the story. 

From the perspective of modularity it is difficult to see how humans could solve novel 

problems or how they could solve recurrent problems in novel ways — things people are 

capable of doing. The difficulty presented by novel problems is that, by definition, there 

is no characteristic input-output relation based on past recurrences that can solve them. 

We claim domain-general mechanisms are central to human and animal cognition in that 

they allow for the solution of non-recurrent problems in attaining evolutionary goals.  

These are mechanisms captured by the g factor of intelligence tests and some learning 

mechanisms. In the case of intelligence, they include the executive functions of working 

memory, which are conscious, controlled, unencapsulated, and domain-general.  

Motivation and the Frame Problem 

A major goal of this paper is to delineate a middle ground between the “blank 

slate” perspective based only on domain-general mechanisms and the “massively 

modular” view proposed by evolutionary psychologists as a necessary correction.  

The blank slate perspective (the “Standard Social Sciences Model”) proposes that 

the mind consists solely of a set of domain-general mechanisms. A basic problem is there 

are no problems that the system was designed to solve. The system has no pre-set goals 
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and no way to determine when goals are achieved, an example of the “frame problem” 

discussed by cognitive scientists (e.g., Dennett, 1987; Fodor, 1983; Gelman & Williams, 

1998). This is the problem of relevance — the problem of determining which problems 

are relevant and what actions are relevant for solving them. An organism that is a blank 

slate is unable to determine which of the infinite number of problems it must solve to 

survive and reproduce. It faces a “combinatorial explosion” of possible behaviors, 

because at any time it could do any of an infinite number of things (Tooby & Cosmides, 

1992). Without framing mechanisms guiding it toward the solution of adaptive problems, 

a problem solver would “go on forever making up solutions that have nothing to do with 

a non-assigned problem” (Gelman & Williams, 1998).  

Due to the frame problem, it is difficult to see how domain-general processes 

could evolve without further constraints. Perceptual inputs are massively ambiguous, and 

domain-general systems have no problems needing solution and no criteria for when they 

are solved. Modular systems provide a built-in sense of relevance: We pay more attention 

to moving objects than stationary objects, and faces more than feet. Men generally seek 

out young beautiful women rather than old women as objects of sexual desire. We do 

these things as a result of our evolutionary history. On this view, such adaptations must 

by definition respond only to recurrent features of the environment — the Stone Age 

mind adapted to recurrent features of the Pleistocene. 

On the basis of these considerations, we accept the argument that humans could 

not have evolved as nothing but general-purpose problem solvers. We propose, however, 

that an important aspect of evolution has been to solve the frame problem in a manner 

compatible with the evolution of domain-general mechanisms.  A key idea is that we 

have evolved motivational systems.  These provide positively or negatively valenced 

signals to the organism — signals of adaptive relevance that help to solve the frame 

problem while allowing for the evolution of domain-general problem solving. Consider 
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the state of hunger. A child confronted with an infinite number of behavioral choices 

narrows down this infinite array by choosing behaviors likely to satiate it, including ones 

that worked in the past. The motive of hunger, and the fact that certain behaviors reliably 

result in satiating it, give structure to the child’s behavior and effectively prevent 

combinatorial explosion. The child’s behavior is not random because it is motivated by 

the desire to assuage the feeling of hunger. 

Motivational mechanisms can be thought of as a set of adaptive problems to be 

solved but whose solution is massively under-specified. Motivational systems like the 

child’s hunger enable the evolution of any cognitive mechanism, no matter how 

opportunistic, flexible, or domain-general, that is able to solve the problem. The child 

could solve its hunger problem by successfully getting the attention of the caregiver. It 

could solve it by stumbling onto a novel contingency, or by observing others who have 

successfully satisfied their hunger. The child could also develop a sophisticated plan 

using explicit representations of goals and a hierarchically structured set of procedures 

for achieving them. This last alternative involves bringing to bear two central concepts 

discussed below — working memory and general intelligence. 

Evolved goals help solve the frame problem by channeling the operations of the 

executive functions along adaptive lines. They ensure they direct attention to knowledge 

relevant to the task at hand (e.g., “how was I successful in obtaining food on previous 

occasions?”). They also motivate devising an appropriate strategy, including ones based 

on past experience, but also new ones designed to overcome new obstacles. Motivational 

mechanisms allow for performance examination and evaluation, as in the case of the 

hungry child where satiation of hunger acts as a cue that the systems have operated 

successfully. 

Motivation is a central component of many psychological adaptations. Whatever 

cognitive adaptations humans may have, a crucial subset of these adaptations must 
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function as motivators to engage in adaptive behaviors. Imagine an evolved cognitive 

program that functions to detect cheaters during social exchange. As evolutionary 

psychologists have pointed out, such a system is essential for the evolution of reciprocal 

altruism (e.g., Axelrod, 1984; Cosmides & Tooby, 1989). To be effective it would also 

have to motivate the person to alter the situation. Simply knowing that one is being 

exploited is not enough. It is for this reason that so much of the psychological research in 

the areas of altruism and pro-social behavior is concerned with emotions such as guilt, 

empathy, and sympathy, as well as ones such as moral outrage resulting from non-

reciprocated altruistic behavior, free-riding in public goods experiments (Fehr & Gächter, 

2002) or from exploitative behavior.  

The scheme of Emmons (1989), shown in Figure 1, is useful in conceptualizing 

the relation between evolved motivational systems and domain-general cognitive 

processes (see also Bowlby’s [1969] discussion of plan hierarchies). In this hierarchical 

model, personal strivings and various lower level actions and goals are in the service of 

motive dispositions at the highest level. An important subset of these motive dispositions 

is evolved motive dispositions (EMDs; MacDonald, 1991). EMDs are adaptations that 

constitute fundamental human biosocial goals. Personality theory provides a basis for 

supposing there are many EMDs, including ones for seeking out social status, sexual 

gratification, safety, love, and a sense of accomplishment (MacDonald, 1995, 1998).  

------------------------------------------- 
Insert Figure 1 here 

------------------------------------------- 
 

Some of these EMDs may have characteristic inputs designed to trigger solutions 

to specific problems in the organism’s EEA. A motivational system such as hunger or 

lust, for example, has characteristic inputs (e.g., physiological signals of hunger 

[declining blood sugar], the sight of a nubile woman) motivating the person to seek the 

rewards of food and sexual gratification, respectively. The outputs of EMDs are typically 
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goals and beliefs rather than specific behaviors. However, the psychological rewards 

associated with satisfying these goals, such as the pleasure associated with satisfying 

hunger or engaging in sexual intercourse, are not automatic outputs of the system. Rather 

they must be sought after, and their achievement is by no means guaranteed.  

It is such reward seeking (or punishment avoiding) behavior that allows for 

flexible strategizing and the evolution of domain-general cognitive mechanisms. People 

may solve their hunger problem in any number of ways, including learning novel 

contingencies and using mechanisms linked to general intelligence. There is no 

requirement that the means of attaining EMDs be an evolutionarily prepared response. 

Having a specific set of evolved mechanisms for assuaging hunger or achieving other 

EMDs is a non-necessity. For instance, an organism able to devise novel and 

opportunistic solutions to the chronic problem of being hungry would likely have higher 

biological fitness, as would an organism able to detect causal relations between food and 

various contingent events via operant or classical conditioning.  

At a fundamental level, we suppose that problem solving is opportunistic — 

people may satisfy their EMDs and achieve the lower level goals depicted in Figure 1 by 

utilizing any and all available mechanisms.  The only criterion is what is effective in goal 

attainment. Experimentation with a variety of strategies followed by selection of effective 

ones is the rule. Children are “bricoleurs”—tinkerers who constantly experiment with a 

wide range of processes to find solutions to problems as they occur. Children “bring to 

bear varied processes and strategies, gradually coming through experience to select those 

that are most effective. ... Young bricoleurs ... make do with whatever cognitive tools are 

at hand” (Deloache, Miller & Pierroutsakos, 1998; p. 803).  

Evolutionary Psychology and the EEA 

We propose that the view that human cognitive architecture is dominated by 

psychological modules stems from a misconstrual of the nature of the evolutionary 
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environment and the kinds of adaptations that it produces. According to evolutionary 

psychologists, the EEA of any animal consists of a set of statistical regularities — 

recurring problems and associated cues that can be used in solving them. Only these 

regularities can be exploited by natural selection: “It is only those conditions that recur, 

statistically accumulating across many generations, that lead to the construction of 

complex adaptations. . . . For this reason, a major part of adaptationist analysis involves 

sifting for these environmental or organismic regularities or invariances” (Tooby & 

Cosmides, 1992, p. 69). For example, the female waist to hip ratio is correlated with 

fertility. Cognitive mechanisms can evolve that use this cue in solving the problem of 

identifying viable mates (Singh, 1993). Natural selection thus results in a set of 

information processing devices designed to solve recurrent problems by processing 

recurring cues from the environment.  

This view of the EEA, and of the human mind that evolved in response to its 

challenges and opportunities, is incomplete. Because recurrence is built into the 

definition of an adaptation, it implies there could be no adaptations designed to deal with 

novel, non-recurrent problems: “Long-term, across-generation recurrence of conditions ... 

is central to the evolution of adaptations” (Tooby & Cosmides, 1992, p. 69). Prima facie, 

this leaves unexplained how humans are routinely able to solve novel problems, learn 

novel contingencies, create the extraordinary human culture characteristic of the last 

50,000 years of human evolution, and cope with life in a constantly changing world far 

removed from the Pleistocene. It leaves unexplained the massive body of data, reviewed 

below, showing human intelligence and learning function to solve novel problems. 

Accordingly, it is necessary to develop a concept of adaptation not restricted to 

mechanisms designed to process statistically recurrent features of the environment. As 

used here, an adaptation is a system of inherited and reliably developing properties that 

became incorporated into the standard design of a species because it produced functional 
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outcomes that contributed to propagation with sufficient frequency over evolutionary 

time. The functional outcomes include the achievement of evolved motive dispositions 

discussed above. This view is broad enough to include domain-general mechanisms, such 

as those enabling us to reason by analogy that we will discuss below. Organisms with 

mechanisms enabling analogical reasoning would be capable of solving a wide range of 

adaptive problems, even ones that occur in a single generation.  

Central to our position is that a critical aspect of the EEA was that humans were 

forced to adapt to rapidly shifting ecological conditions by developing adaptations geared 

to novelty and unpredictability. The EEA was not a period of stasis but rather a period of 

rapid change that witnessed the appearance and disappearance of several different 

hominid species over a two million year period (Foley, 1996; Irons, 1998). Modern Homo 

sapiens appeared late in the Pleistocene (100,000 to 200,000 years ago) and exhibited a 

wide variety of distinct hunting and gathering ways of life. Humans and other mammals 

were forced to adapt to inconsistent selection pressures due to rapidly changing 

ecological conditions (Potts, 1998; Richerson & Boyd, 2000). Environmental fluctuations 

became increasingly extreme from the Miocene to the present. For example, based on 

European pollen sources, there were repeated alternations between dense, moist forests 

and cold, dry steppe during the past million years. These shifts were unpredictable and 

non-repetitive rather than cyclic and included decade-scale fluctuations between glacial 

and warm conditions and century-long shifts between cold steppe and warm forested 

conditions interspersed with periods of climatic stability. Rapid local change also resulted 

from volcanoes, earthquakes, and tectonic activity.  

These climatic shifts are associated with increased diversity of encephalization 

among mammalian lineages, with some lineages—prototypically the lineage leading to 

humans—evolving toward larger brains and increased behavioral flexibility. There was a 

broad trend during the Pleistocene toward the evolution of mammalian taxa more flexible 
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in eating habits, patterns of social grouping, and group size in relation to resource 

availability. This corresponded to a period of rapid environmental shifts during the mid-

Pleistocene. In our view, the predominant human response was to evolve adaptive 

flexibility by developing mechanisms designed to deal with novel and unpredictable 

settings. This adaptive flexibility led to a decoupling of the organism from any one 

habitat: “Hominids became less inclined to track particular habitats as change occurred 

and more capable of adjusting to novel conditions and the increasing range of [climatic] 

oscillation” (Potts, 1998, p. 93). 

A major trend in human evolution has been increased encephalization, the largest 

increases coinciding with the largest environmental oscillations (Potts, 1998). Larger 

brain size is also linked with a wider geographic range, suggesting the larger brain 

enabled greater adaptation to environmental diversity. Across mammalian species and 

particularly in the line leading to humans, there are associations among brain size, mental 

ability, learning ability, flexibility of response, and developmental plasticity. There are 

also associations among these variables and the elaboration of costly parenting practices, 

delayed sexual maturation, and a prolonged juvenile period in which social learning is of 

great importance (Barton, 1999; Eisenberg, 1981; Jerison, 1973; Johanson & Edey, 1981; 

Richerson & Boyd, 2000).  

Associations between brain size and innovation have been found among both 

mammals and birds. Reader and Laland (2002) found an association between executive 

brain ratio (neocortex and striatum volume over brainstem) with innovation, tool use and 

social learning. The results suggest that there was selection among primates for “adaptive 

complex variable strategies, such as inventing new behavior, social learning, or using 

tools” (p. 4440). Social learning frequency was independent of group size, providing 

support for ecological (foraging) hypotheses for brain evolution in primates. Similarly, 

Lefebvre, Whittle, Lascaris, and Finkelstein (1997) found a link between relatively larger 
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forebrain structures and the frequency of opportunistic foraging innovations for various 

avian orders. To count as a foraging innovation, the behaviors had to be noted by field 

observers as being highly unusual for the species. Examples include using automatic 

sensors to open bus station doors (House sparrow); using cars as nutcrackers for palm 

nuts (Common crow); opening conch shells by dropping them on concrete-filled drums 

(Osprey), etc.  

General Intelligence as an Adaptation to Novelty and Unpredictability 

While the Pleistocene may have intensified the need to adapt to novelty and 

unpredictability, and while humans have specialized in the flexible, domain-general 

mechanisms of learning and general intelligence, environments are never completely 

stable and predictable for any animal. We argue that  human general intelligence is an 

elaboration of abilities present in many animals (perhaps also including mechanisms that 

are unique to humans). Animals and humans often have to make decisions about how to 

attain their goals in situations where past learning, whether by specialized or 

unspecialized simple learning mechanisms, is ineffective in attaining evolved goals. 

General intelligence in animals and humans 

Common ravens (Corvus corax), for example, can solve problems they have not 

encountered as a selective force in their evolution. According to Heinrich (2000), this 

behavioral flexibility results from problem solving mechanisms that ravens evolved as a 

way of exploiting diverse and unpredictable environments—results highly compatible 

with the findings of Lefebvre et al. (1997) (see above). Ravens can be found around the 

globe, in environments ranging from arctic tundra, to forests, mountains, and urban 

environments, and in each of these environments, they are able to respond to adaptive 

problems in very flexible ways.  

Heinrich (2000) demonstrated the ability of ravens to solve novel problems by 

using long pieces of string to hang meat from a perch. For ravens, gaining access to this 
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food is a novel problem. The solution involved repeated pulls on the string with the beak 

while holding and releasing the string with a foot. Though each step in the solution may 

be innate (e.g., grabbing objects with their beaks or with their feet), assembling these 

behaviors into a sequence that solves the problem is novel. Not all birds arrive at this 

solution, indicating individual differences in performance as there are for general 

intelligence in humans.  

According to Heinrich (2000), the solution is accomplished by “insight” 

occurring suddenly and within a short time of being exposed to the problem. It does not 

emerge through a gradual trial and error learning process. Heinrich (2000) argued that the 

ravens formulate a goal, build mental scenarios, and evaluate possible sequences of 

actions without having to endure their consequences. Information from various sources is 

taken into account in planning the solution. Thus the ravens will not pull up the string if 

the piece of meat appears to be too large, nor will they pull up the string if it is attached 

to rocks rather than meat.  

Heinrich (2000, p. 289) notes insight is used to solve problems “whose solution 

is not wholly preprogrammed” — problems not recurrent in the EEA and not previously 

encountered by the individual. Insightful problem solving has also been demonstrated in 

apes (Köhler’s [1925] Einsicht problems) and pigeons. Epstein, Kirshnit, Lanza and 

Rubin (1984) showed that pigeons trained to do two separate tasks (pushing a box, 

pecking a banana-like object) were able to put them together to solve a problem requiring 

both abilities. Animals trained in only one of these could not solve the problem. 

Anderson (2000) found evidence for general intelligence in rats by studying 

problems requiring the ability to “combine non-contiguously learned behaviors into a 

solution for a novel problem” (p. 81). Problems include finding a route to a goal box 

when the previously learned route is blocked and combining knowledge obtained from 

more than one source to solve a novel problem. While simple learning tasks do not 
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correlate with each other or show stable individual differences, individual differences on 

these tasks are stable and correlated with other conceptually similar tests to make up an 

animal g factor. Anderson extracted a single factor from three such tests and showed 

performance on the tests was positively correlated with brain size (also known to 

correlate with general intelligence in humans; Jensen, 1998).  

Using similar tasks Crinella and Yu (1995) also extracted a g factor in rats 

unrelated to simple learning. Tasks loading on the g factor involved analytical skills, 

learning and memory, and the ability to form strategies. Their g factor for rats based on 5 

tests accounted for 34% of the variance, a finding comparable to studies of g in humans 

(Jensen, 1998). Solving these problems typically involved combining information from 

multiple sources, including from modules specialized for processing spatial information. 

Spatial learning is a modular process in rats (Gallistel, 1990), but the frontal cortex is 

involved in solving novel problems using spatial information. The frontal cortex has been 

shown to be essential to combining information from different experiences but is not 

essential to spatial learning per se (Poucet, 1990). The ability to integrate this information 

with other experiences (learned associations) is part of a positive manifold linked to 

success in solving other novel problems and to brain size — general intelligence. 

The animal data fit well with research on humans which has consistently found 

more intelligent people are better at attaining goals in situations of minimal prior 

knowledge. Particularly important is fluid intelligence, defined as “reasoning abilities 

[consisting] of strategies, heuristics, and automatized systems that must be used in 

dealing with ‘novel’ problems, educing relations, and solving inductive, deductive, and 

conjunctive reasoning tasks” (Horn & Hofer, 1992, p. 88). Tests of fluid intelligence 

produce the highest correlations with g (Carpenter, Just & Shell, 1990; Carroll, 1993; 

Duncan, Burgess & Emslie, 1995). Tests such as Raven’s Progressive Matrices and 

Cattell’s Culture Fair Test, tap the capacity “to adapt one’s thinking to a new cognitive 
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problem” (Carpenter et al., 1990, p. 404). This highlights the idea that intelligence taps 

conscious problem solving in situations where past recurrences would be unhelpful 

except perhaps by analogy or induction to the new situation.  

Mechanisms underlying general intelligence 

Working memory capacity has been implicated as underlying individual 

differences in fluid intelligence (e.g., Bechelder & Denny, 1977; Engle, Tuholski, 

Laughlin & Conway, 1999; Kyllonen & Christal, 1990; Larson & Saccuzzo, 1989). For 

example, Kyllonen and Christal (1990) found correlations from .80 to .90 between a 

working memory factor (e.g., digit span, mental arithmetic) and a reasoning factor 

(analogies, verbal reasoning). Engle et al. (1999) showed that the executive functions of 

working memory (assessed by tasks involving attentional control) predicted g but short-

term memory capacity (assessed by tasks such as memory for sets of words) did not. The 

variance unique to working memory tests predicted individual differences in fluid 

intelligence, but the variance common to both types of tests did not, suggesting that the 

variability in the executive functions (the component that distinguishes tests of short-term 

memory from working memory tests) underlies differences in fluid intelligence. 

One role of the executive functions in solving novel problems is in goal 

management. This involves constructing, executing and maintaining a mental plan of 

action during the solution of a novel problem (Carpenter et al., 1990). For example, the 

Raven’s Progressive Matrices fluid intelligence test and the Tower of Hanoi problem (in 

which subjects must develop a long term plan with multiple sub-goals) require being able 

to activate multiple goals, and one must be able to keep track of the satisfaction of each 

one of the goals (Carpenter et al., 1990, p. 413). Performance on these tasks was highly 

correlated (r = .77), suggesting substantial goal management is necessary in both tasks. 

Executive functions underlying general intelligence are thus involved when 

problems call for substantial planning and keeping track of various sub-goals. They are 



16  Evolution of Domain-Generality 

involved in dealing with situations very demanding of attentional resources because 

multiple constraints have to be taken into account, constraints that may vary substantially 

with the context. As Marshalek, Lohman, and Snow (1983) point out, “more complex 

tasks may require more involvement of executive assembly and controlled processes that 

structure and analyze the problem, assemble a strategy of attack on it, monitor the 

performance process, and adapt these strategies as performance proceeds” (p. 124).  

Executive functions should play a more important role in earlier stages of skill 

acquisition; once planning is no longer essential, the problem is no longer novel because 

its solution has become proceduralized. Thus Ackerman (1988) found differences in 

measures of g were important during earlier stages in skill acquisition. However, with 

sufficient practice, the effects of g disappeared, provided the task remained fairly 

consistent (for instance, the rules didn’t suddenly change). With practice, individual 

differences were accounted for by speed of perceptual processing and motor responding. 

Neuropsychological evidence suggests the frontal lobes are the locus of the 

executive functions (Duncan et al., 1995; Duncan, Emslie, Williams, Johnson & Freer, 

1996). Patients with frontal lobe damage have difficulty planning for the future, they 

repeat movements and actions, and score lower on measures of fluid intelligence. Frontal 

lobe patients matched for scores on crystallized intelligence with normal controls scored 

20 to 60 points lower than the controls on the Cattell Culture Fair Test, a measure of fluid 

intelligence (Duncan et al., 1995). 

Further studies by Duncan and his colleagues show that the inability to solve 

novel problems due to frontal lobe damage arises because of problems in goal 

management. The solution of novel problems involves a hierarchically-structured process 

characterized by goals and a set of progressively detailed sub-goals requiring attention to 

a wide range of information.  There is “successive selection of requirements or 

constraints at multiple levels of abstraction, using knowledge concerning the implications 
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of one fact to establish target values for others. Candidate goals are suggested both by 

currently active supergoals and by the state of the environment” (Duncan et al., 1996, p. 

263).  People with damage to the frontal lobes, particularly the dorsolateral prefrontal 

cortex, are characterized by goal neglect — the “disregard of a task requirement, even 

though it has been understood” (Duncan et al. 1996, p. 265). 

Controlled attention is critical to goal management (Engle et al., 1999; Kane, 

Bleckley, Conway, & Engle, 2001; Lustig, May & Hasher, 2001). The mechanisms of 

controlled attention are limited capacity mechanisms responsible for activating relevant 

representations and keeping them in an active state while inhibiting irrelevant ones. 

Activation of representations is important because they guide behavior. Kane et al. (2001) 

found that keeping task relevant information in active state was particularly challenging 

in conditions where distracting information is present. Distracting information needs to 

be suppressed because if not, the distracters and not the goal relevant information, will 

guide behavior. “The controlled attention functions of the central executive are necessary 

for those processes required to maintain the activation of memory units and to focus, 

divide and switch attention as well as those processes to block inappropriate actions and 

to dampen activation through inhibition” (Engle et al., 1999, p. 327). 

Individual differences in working memory capacity reflect differences in the 

capacity for controlled attention. Kane et al. (2001) found that subjects with low working 

memory capacity were less able to inhibit the prepotent response of orienting toward a 

visual cue in a task that required them to look in the direction opposite the cue. This 

supports the idea that working memory capacity plays a crucial role in controlling 

attention in situations where responding is not automatic — situations requiring active 

engagement with task goals and the inhibition of prepotent responses. 

The frontal lobes play a crucial role in controlling attention and managing 

potentially interfering information (Goel & Grafman, 1995; Goldberg, 2001). For 
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example, frontal lobe patients have difficulty inhibiting immediate impulses and thus 

perform poorly on the Stroop test (Goldberg, 2001). Frontal lobe patients also have 

difficulty inhibiting responses on the Tower of Hanoi puzzle where successful moves 

require inhibiting long-term goals in favor of short-term goals that seem inconsistent with 

the long-term goal (Goel & Grafman, 1995). Frontal lobe patients performed more poorly 

because they were less able to resolve conflicts between end-goals and sub-goals 

requiring the temporary inhibition of certain responses. 

The executive functions of working memory and the mechanisms of activation 

and inhibition do not appear to satisfy the criteria for modularity. By definition, 

mechanisms for solving novel problems have to be unspecialized in the domains for 

which they provide solutions. Although they may have access to specialized information 

obtained from the various modules that provide them with inputs, the problem solving 

procedures would have to be general enough to allow us to solve novel problems in 

various domains. We noted above that there is a substantial correlation between 

performance on the Raven’s Progressive Matrices and performance on the Tower of 

Hanoi puzzle. Both tasks require a substantial amount of goal management, working 

memory and inhibition of prepotent responses. However, the types of information utilized 

in solving these problems, the specific goals and sub-goals, and the specific responses 

requiring suppression are unique to each task. 

Furthermore, measures of working memory capacity predict performance across 

a wide range of tasks. The only common element is that they make high demand on 

attentional resources. For example, people who did well on a mathematical processing 

task also tended to do well on a perceptual task requiring inhibition of prepotent 

responses (Kane et al., 2001). Similarly, Lustig et al. (2001) found that individual 

differences in the capacity to inhibit no-longer-relevant information (i.e., proactive 

interference) predicted how well participants remembered components of a story. Turner 
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and Engle (1989) showed performance on a mathematical processing task and reading 

span task, another measure of working memory capacity, both predicted reading ability. 

This is what one would expect if working memory “reflects an abiding, domain-free 

capability that is independent of any one processing task” (Kane et al. 2001, p. 169). 

Nor do these processes seem to be information encapsulated. Modules carry out 

their operations by taking into consideration a very limited database (Fodor, 1983). The 

executive functions of working memory, however, coordinate information from various 

sources. As noted above, working memory is like an executive who delegates tasks to 

subordinates, integrates information from other areas, and selects what information to 

seek (Goldberg, 2001). Indeed, the prefrontal cortex, the seat of the executive functions, 

is connected to every functional area of the brain. As a result, it is well suited for 

coordinating and integrating the work of all the other brain structures (Goldberg, 2001).  

The executive functions are thus able to access goal-relevant information from a 

wide range of domains when solving a problem. Indeed, it is by being able to access 

representations from more modular processes that the executive functions are able to 

extend cognitive competencies in ways unrelated to their evolutionary function (e.g., 

Mithen , 1996). The data on general intelligence in animals is also consistent with this 

view. For example, Thompson , Crinella and Yu (1990) found six brain regions were 

involved in psychometric g for the rat, including a visuo-spatial attentional mechanism, a 

visual discrimination mechanism, a vestibular-proprioceptive-kinesthetic discrimination 

mechanism, a place learning mechanism, and a non-specific mechanism. Detterman 

(2000) notes the consistency of these data with research on human intelligence. 

There is much evidence that general intelligence facilitates the integration of 

information obtained from modules. Geary’s (1995) distinction between biologically 

primary and biologically secondary abilities is useful in this regard. Biologically primary 

abilities are domain-specific and include abilities like language and simple quantitative 
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abilities, which develop universally and spontaneously. Biologically secondary abilities, 

such as reading and mathematical ability, utilize these domain-specific modules, but in a 

novel manner. Rather than appearing spontaneously and effortlessly, biologically 

secondary abilities typically require practice and tuition, often with coercion, bribery, or 

exhortation. Learning these biologically secondary abilities involves conscious awareness 

rather than implicit awareness. Success at these biologically secondary abilities is 

strongly correlated with general intelligence (Geary, 1995).  

As a case in point, human language results from highly dedicated systems that 

enable children to effortlessly and unconsciously learn extraordinarily complex and 

productive grammatical rules (Pinker, 1994). However, skill in integrating these language 

systems as well as the output of visual processing mechanisms into an evolutionarily 

novel ability, reading, is strongly linked to general intelligence. Unlike language learning, 

reading is typically mastered only with a great deal of conscious effort, and represents a 

major hurdle for many schoolchildren. The correlation between IQ and reading skills 

ranges from about .6 to .7, even longitudinally (e.g., Stevenson et al., 1976). IQ correlates 

with reading most when decoding ability — a specialized process — is controlled (Jensen 

1998). Around 3rd to 4th grade children are adept at decoding, and individual differences 

are mainly in comprehension. Reading comprehension is approximately as highly 

correlated with verbal as with nonverbal IQ. Similarly, there is evidence that children’s 

language learning is limited because of limitations in their working memory (Newport, 

1991; Elman, 1994). As noted above, working memory is a domain-general ability 

strongly associated with g. 

Functions of General Intelligence: Decontextualization and Analogical Reasoning 

Decontextualization 

In an admittedly speculative treatment, Cosmides and Tooby (2000, 2002) 

propose to account for the ability of humans to solve novel problems by the evolution of 
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meta-representational abilities that include a “scope syntax” that marks some information 

as only locally true or false. It includes “a set of procedures, operators, relationships, and 

data-handling formats that regulate the migration of information among subcomponents 

of the human cognitive architecture” (2002, p. 183). Particularly important are meta-

representations allowing us to decouple representations of locally true information from 

the rest of our knowledge base (e.g., John believes that X, where X may be true or false). 

This allows people “to explore the properties of situations computationally, in order to 

identify sequences of improvised behaviors that may lead to novel, successful outcomes” 

(Cosmides & Tooby, 2000, p. 67). This view implies that intelligence involves what one 

might term “hyper-contextualization” because it highlights local contingency and an 

unspecified set of mechanisms that allow for solution of localized problems in ways not 

coupled to the modular mechanisms designed to solve evolutionarily recurrent problems.  

While meta-representational abilities are of undoubted importance in solving 

novel problems, these abilities are domain-general (Chiappe, 2000). For instance, Sperber 

(1994) postulates a meta-representation module specialized for thinking explicitly about 

representations. This mechanism has, inter alia, the “ability to evaluate the validity of an 

inference, the evidential value of some information, the relative plausibility of two 

contradictory beliefs” (Sperber, 1994, p. 61). Furthermore, it is able to carryout these 

activities across all domains of thought. “The actual domain of the meta-representational 

module is the set of all representations of which the organism is capable of inferring or 

otherwise apprehending the existence and content” (Sperber, 1994, p. 60). However, if 

this mechanism is able to, say, evaluate the validity of inferences in any domain, as 

Sperber himself suggests, it seems most reasonable to characterize the mechanism in 

question as a domain-general reasoning mechanism and not a module. 

Moreover, Cosmides and Tooby’s emphasis on hyper-contextualization is 

radically at odds with data showing general intelligence facilitates solving novel 
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problems not by emphasizing local contingency but by decontextualization and 

abstraction. Decontextualization enables humans to inhibit the operation of highly 

context-sensitive, implicit and automatic heuristics for making inferences, judgments and 

decisions (Stanovich & West, 2000).  It is an aspect of Piagetian formal operational 

thought, “the independence of form from content” (Piaget, 1972). Decontextualization 

enables dealing with novel and unpredictable environments because a common source of 

solutions to novel problems involves recognizing similarities between new problems and 

previously solved problems, as via analogical reasoning.       

IQ researchers are well aware of the centrality of decontextualization for thinking 

about intelligence. 

One of the well-known byproducts of schooling is an increased ability to 

decontextualize problems. In almost every subject…pupils learn to discover 

the general rule that applies to a highly specific situation and to apply a 

general rule in a wide variety of different contexts. The use of symbols to 

stand for things in reading (and musical notation); basic arithmetic 

operations; consistencies in spelling, grammar, and punctuation; regularities 

and generalizations in history; categorizing, serializing, enumerating, and 

inferring in science, and so on. Learning to do these things, which are all 

part of the school curriculum, instills cognitive habits that can be called 

decontextualization of cognitive skills. The tasks seen in many nonverbal or 

culture-reduced tests call for no scholastic knowledge per se, but do call for 

the ability to decontextualize novel situations by discovering rules or 

regularities and then using them to solve the problem (Jensen, 1998, p. 325). 

Investigations of human reasoning show humans often radically contextualize 

problems. In particular, Stanovich and West (2000) note people have the following 

tendencies: (a) to adhere to conversational principles even in situations that lack many 
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conversational features; (b) to contextualize a problem with as much prior knowledge as 

is easily accessible, even when the problem is formal and the only solution is a content-

free rule; (c) to see design and pattern in situations that are undesigned, unpatterned, or 

random; (d) to reason enthymematically — to make assumptions not stated in a problem 

and reason from those assumptions; (e) the tendency toward a narrative mode of thought.  

Thinking evolved in a social context and the contextualization process often 

works quite well (Anderson, 1991; Oaksford & Chater, 1996). However, there are many 

real-life situations where decontextualization is called for, and decontextualization is 

linked with g. There is evidence people with higher g are better able to reason logically 

on a wide variety of tasks, including those where people are prone to the systematic 

biases resulting from the radical contextualization characteristic of human thinking.  

In two studies Stanovich and West found correlations from 0.25 and 0.40 

between g and performance on various reasoning problems in a university sample (thus 

attenuating the correlations compared to a general population sample). These included 

tasks where successful performance requires ignoring the believability of the conclusion: 

knowing how to falsify an “if P, then Q” statement in Wason’s Selection Task; avoiding 

influence by vivid but unrepresentative information in favor of valid statistical 

information; avoiding the bias of allowing prior beliefs to influence evaluations of 

arguments; evaluation of association based on 2 X 2 contingency tables; avoiding the bias 

of rating positive outcomes as superior to negative ones when confronted with equally 

compelling evidence for both; being able to test the influence of one variable by holding 

others constant; choosing one of two counterfactual suggestions as better when there is 

objectively no difference.2 IQ accounted for about 39% of the variance on the seven tests.  

Stanovich and West interpret their results as indicating two distinct cognitive 

systems. System 1 is an interactional, social intelligence. It is composed of mechanisms 

that support communication in which intention and attribution are critical. This has been 



24  Evolution of Domain-Generality 

termed “interactional intelligence” by Levinson (1995). Construals triggered by System 1 

are highly contextualized, personalized, and socialized. They are driven by considerations 

of relevance and are aimed at inferring intentionality by the use of conversational 

implicature even in situations that are devoid of conversational features. System 1 

consists of modules performing specific computations that solve recurrent problems in 

the human social EEA. They solve these problems quickly and unconsciously. The 

primacy of these mechanisms leads to what Stanovich terms the “fundamental 

computational bias” in human cognition — the tendency to automatic contextualization 

of problems which tendency may have yielded solutions to recurrent social problems in 

our evolutionary past (Levinson, 1995). There appears to be low variability in 

interactional intelligence and little relation between interactional intelligence and IQ 

(Jones & Day, 1997; Matthews & Keating, 1995; McGeorge, Crawford, & Kelly, 1997). 

System 2 conjoins the various characteristics that have been viewed as typifying 

controlled processing. It encompasses the mechanisms underlying general intelligence. 

System 2’s more controlled processes serve to decontextualize and depersonalize 

problems. This system is more adept at representing in terms of rules and underlying 

principles. While this system is much slower than System 1 modules, its advantage is its 

flexibility — it’s ability to solve novel problems. It can deal with problems without social 

content and is not dominated by the goal of attributing intentionality or by the search for 

conversational relevance.  

Analogical Reasoning 

Analogical reasoning is a central process by which humans solve novel problems. 

According to James (1890, p. 530) “the faculty for perceiving analogies is the best 

indication of genius.” People who could analogize are “the wits, the poets, the inventors, 

the scientific men, the practical geniuses” (p. 530). Correlations between tests of general 

intelligence and tests of analogical reasoning range from .68 to .84 (Spearman, 1927; 
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Sternberg, 1977). As indicated below, this is because analogical reasoning involves a 

conscious, controlled, comparison process that draws heavily on working memory. 

 Analogical reasoning involves drawing parallels between novel problems and 

problems that have been solved in the past.  Analogies, such as “sound is like a water 

wave,” thus involve transferring information across conceptual domains (Chiappe, 2000; 

Gentner & Holyoak, 1997; Holyoak & Thagard, 1995). The transfer is based on 

establishing relevant similarities between a source domain (e.g., water waves) and a 

target domain (e.g., sound or light). Analogies allow us to use a familiar situation as a 

model for making inferences about an unfamiliar situation (Gentner & Holyoak, 1997). 

An analogy between water waves and the propagation of sound may depend on noticing 

that both spread from a point of origin and it may lead us to infer that sound should 

bounce back when it strikes a surface (Holyoak & Thagard, 1995).  

Analogical reasoning does not fit well into a fully modular view of cognition 

(Chiappe, 2000; Fodor, 1983; Mithen, 1996). It is thus no surprise that a discussion of 

analogical reasoning is largely absent from foundational articles on evolutionary 

psychology. The influence of analogy in cognition, however, can be witnessed across all 

spheres of human life. It is a truly domain-general process. Religions analogize gods to 

humans. Scientists use analogies in developing theories (Huygens’s use of light and 

sound to support his wave theory of light; Darwin’s analogy between artificial selection 

and natural selection; the mind as a blank slate or computer). Analogies are also common 

in political rhetoric (the domino theory of communism), precedent-based legal reasoning, 

and everyday language (e.g., “We’re at a crossroads;” Lakoff & Johnson, 1980). 

Importantly, showing people an analogous situation from a very different domain 

facilitates solving novel problems (Gick & Holyoak, 1980).  

Implicit in these examples is also the unencapsulated nature of analogical 

reasoning. The more information that a system can take into account, the less 
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encapsulated it is. As Fodor (1983, p. 117) notes, “By definition, encapsulated systems do 

not reason analogically.” There seems to be no limit to the domains humans can bring 

together for comparison — lawyers and sharks, crime and disease, evolution and 

lotteries, rage and volcanoes, education and stairways (Chiappe, 2000). Although many 

of the comparisons that we are capable of making are fruitless (computers as 

windshields), our capacity to make them shows we are capable of bringing just about any 

two concepts together (Chiappe, 2000, Koestler, 1964).  

Analogical reasoning involves explicit manipulation of mental representations. In 

reasoning analogically, we consciously reflect on representations, searching among their 

properties for those pertinent to the analogy. Analogical reasoning also requires 

comparison processes as described, for example, in Gentner’s (1983) “structure mapping” 

theory. The comparison process involves establishing a common system of relations 

between the source domain and the target rather than simply mapping attributes of the 

objects. For example, an analogy between the solar system and a hydrogen atom exploits 

the higher order relation between the sun’s attraction of the planet as the cause of the 

planet revolving around the sun rather than the superficial attributes of the sun or planets. 

Several studies have shown the overall importance of relational matches to 

analogical reasoning, especially higher order relational matches that map in a systematic 

and principled manner onto the target, (e.g., Clement & Gentner, 1991; Gentner & 

Clement, 1988; Markman & Gentner, 1993). In general, people prefer interpretations that 

involve establishing similarities at abstract levels: “People prefer to match and carry over 

systems of predicates governed by higher-order constraining relations (Gentner & 

Clement, 1988, p. 313). Analogical reasoning is also a goal-driven process (Dunbar, 

1997; Holyoak & Thagard, 1995; Spellman & Holyoak, 1996). Goals play a crucial role 

in analogical reasoning because they serve to ensure that the process is guided along 

relevant directions, thereby avoiding the frame problem. As indicated above, goals are 
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critical to the evolution of domain-general mechanisms, and goal management is an 

important aspect of general intelligence. 

Analogical reasoning on the basis of relations is also found among animals. The 

best documentation is on chimpanzees, which have been found capable of using 

geometric and functional relationships as the basis of analogies (Gillan, Premack & 

Woodruff, 1981; Oden, Thompson & Premack, 2001). Such reasoning may not occur in 

the wild because it has been observed only in animals trained to use a symbol system that 

explicitly contains concepts for the relations “same” and “different” (Oden et al., 2001). 

“Prior experience with tokens, analogous to words, that symbolize abstract same/different 

relations is a powerful facilitator enabling a chimpanzee…to explicitly express in 

judgment tasks…their otherwise implicit perceptual knowledge about relations between 

relations” (Oden et al., 2001, p. 490). Monkeys given similar training are unable to solve 

analogical problems (Oden et al., 2001).  

Analogical reasoning and working memory. We have noted that working 

memory is a critical component of general intelligence. Analogical reasoning makes 

substantial use of the resources of working memory. The comparison process requires 

both a storage component and an attention-demanding, processing component — two 

hallmarks of working memory tasks. Analogies require the activation of important 

elements and relations of the domains involved while searching for abstract 

commonalities between the two. The current processing goals motivating the analogy 

must be kept active. Potentially distracting components of the domains (e.g., superficial 

features that are irrelevant to the final interpretation of the analogy) must be inhibited.  

Supporting the role of working memory in analogical reasoning, Mulholland, 

Pellegrino and Glaser (1980) found participants made more errors and took longer to 

respond as the number of elements and transformations required to solve an analogy 

increased. “Increases in solution latency and error rates were due to working memory 
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limitations associated with the representation and manipulation of item features at high 

levels of transformational complexity” (Mulholland et al., 1980, p. 281). Kyllonen and 

Christal (1990) found positive correlations ranging from .36 to .54 between performance 

on verbal analogy problems and working memory capacity tests.  Waltz, Lau, Grewal and 

Holyoak (2000) found that increasing working memory load by having subjects generate 

random numbers while solving analogies resulted in fewer higher-level relational 

responses and more lower-level attribute responses than those that did not have to do that 

task. Similarly, Tohill and Holyoak (2000) found that subjects with state anxiety — a 

factor known to depress working memory — produced fewer relational responses and 

more attributional responses than the low anxiety group.  

Neuropsychological research also supports the connection between working 

memory and analogical reasoning. Waltz et al. (1999) found that subjects with damage to 

the prefrontal cortex — the locus of the executive functions of working memory — were 

impaired in the conditions that required integrating multiple relations, including 

analogical reasoning. “Relational reasoning appears critical for all tasks identified with 

executive processing and fluid intelligence” (Waltz et al., 1999, p. 123). Waltz et al. 

suggest that deficits in planning and problem solving can be explained on the basis of 

deficits in relational integration. The construction of a hierarchy of subgoals when 

solving problems “is a special case of relational interaction” (1999, p. 123). 

Neuroimaging studies indicate increasing activation in the dorsolateral prefrontal cortex 

and in the parietal cortex as relational complexity increased (Holyoak & Hummel, 2001). 

While the dorsolateral prefrontal cortex is involved in the domain-general task of 

manipulating relations among display elements, the domain-specific posterior cortex 

represents the elements of the relations (Holyoak & Hummel, 2001). 

Analogical reasoning, decontextualization and the creation of new categories. 

Like other factors related to g, analogical reasoning involves decontextualization. In 
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terms used by Stanovich and West (2000), analogical reasoning involves System 2, the 

controlled processing system that decontextualizes problems, rather than System 1 which 

is automatic, unconscious, and highly contextualized.  

Analogies often require abstraction — a form of decontextualization. Mapping 

across very different semantic domains requires generating representations that abstract 

away from specific details of the domains involved to produce a schema that preserves 

the abstract relations common to the two domains while ignoring the characteristics 

unique to each (Holyoak, 1984). Karmiloff-Smith (1992) refers to the process of 

abstraction as “representational redescription.” Through representational redescription, 

patterns embedded in a particular domain become represented more explicitly and more 

abstractly. As a result, representations become more broadly accessible: “Information 

already present in the organism’s independently functioning, special-purpose 

representations, is made progressively available…to other parts of the cognitive system” 

(Karmiloff-Smith, 1992, pp. 17–18).  

Analogical reasoning therefore yields general problem solving schemas — higher 

order categories applicable across a wide range of domains of which the specific analogs 

are instances (Holyoak, 1984). This decontextualization “deletes differences between the 

analogs while preserving their commonalities” (Holyoak, 1984, p. 208). Such 

decontextualization plays a role in the generation of new concepts in science, as when the 

abstract concept of a wave is used to apply to vastly different domains. “Once a more 

abstract concept of a wave was established, it played a role in the further extension [from 

water waves and sound waves] to light waves” (Holyoak & Thagard, 1995, p. 23).  

The process of creating new categories through analogical reasoning is also 

evident in the metaphorical statements ubiquitous in natural language, statements such as 

“crime is a disease,” “my job is a jail,” and “rumors are weeds” (Chiappe, 2000; Lakoff 

& Johnson, 1980). The process of combining concepts in metaphorical statements leads 
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to the creation of categories more abstract than the source and target concepts involved 

(Glucksberg, 2001). For example, the metaphor “rumors are weeds” leads to the creation 

of the category “undesirable things that spread quickly and uncontrollably.” Once 

generated, this category can be applied to a wide range of novel situations. 

Domain-specificity and domain-generality in learning 

To this point we have argued that the mechanisms underlying general 

intelligence evolved to solve novel problems. This does not, however, exhaust the role of 

domain-generality. We hypothesize that many of the mechanisms underlying what has 

traditionally been called “learning” also feature domain-generality, but are unrelated to 

measures of g. This is because these learning processes do not need the heavy working 

memory involvement typical of tasks reflecting general intelligence. Nonetheless, we 

claim that their domain-generality enables organisms to satisfy evolved goals by 

exploiting novel contingencies. 

To begin, motivation represents a major point of contact between evolutionary 

approaches and approaches based on learning theory. Learning theories generally 

suppose that some motivational systems are biological in origin, but traditionally they 

have tended toward “biological minimalism.” They posit only a bare minimum of 

evolved motivational systems. For example, traditional drive theory proposed that rats 

and people have drives to consume food, satisfy thirst, have sex, and escape pain. For an 

evolutionist, this is a good start, but leaves out a great many other things that organisms 

desire innately. As noted above, even this short list of evolved motivations or even one 

such biologically based motivational system would be consistent with the evolution of 

domain-general mechanisms. Indeed, this has been the implicit and at times explicit 

rationale behind discussions by learning theorists that domain-general learning is 

adaptive in an evolutionary sense (Skinner, 1981). 
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In general, learning biases (e.g., biases in favor of learning certain skills) and 

guided learning (where the goal of learning is achieved via genetic systems) are expected 

to be weak in highly variable (non-recurrent) environments that are not available to the 

genes directly and in situations where individual trial and error learning is quite 

inexpensive (Boyd & Richerson 1985, 1988; Geary & Huffman, 2002; Richerson & 

Boyd, 2000). Conversely, biased learning is favored where the problems to be solved are 

recurrent features of the EEA and where there are high costs to individual learning.  

Evolutionary analyses of learning emphasize that learning mechanisms imply a 

great deal of evolved machinery and that they are often biased in ways that make certain 

types of learning easier than others (Garcia & Koelling, 1966; Öhman & Mineka, 2001; 

Rescorla, 1988; Rozin & Schull, 1988). A paradigmatic example is taste aversion 

learning observable in a wide range of species, including quail, bats, catfish, cows, 

coyotes, and slugs (Kalat, 1985). If a rat consumes food and later feels nauseous, it 

associates the illness with the food rather than with other more recent stimuli such as 

lights and sounds, and it will make this association over much longer periods of delay 

than typical for other examples of learning. The association of food with poison is greatly 

influenced by whether the food is unfamiliar to the animal; an indication that taste 

aversion learning is an adaptation to non-recurrent and unpredictable features of the 

environment.  

This example shows that some types of novelty are sufficiently recurrent to yield 

dedicated, domain-specific mechanisms designed to cope with it. Recurrent novelty 

occurs when organisms have been confronted over an evolutionarily significant period 

with a need to evaluate a specific kind of novel situation, such as rats evaluating novel 

foods. Novel food items are a potential resource for the animal and must not be ignored 

even though they are more likely to be dangerous. Novel food items were a recurrent but 

unpredictable feature of the rat’s EEA, with the result that the animal has evolved 
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adaptations that minimize the cost of sampling this novelty. Rats will also preferentially 

eat novel food that they have smelled on the breath of another rat (Galef, 1987), thereby 

minimizing the danger of trial and error learning and demonstrating the utility of 

specialized social learning mechanisms that evolved to adapt to recurrent problems 

involving specific sources of novelty. 

A similar claim has been made by Geary and Huffman (2002), who argue for the 

existence of “soft modules.” These mechanisms allow animals to process both variant 

and invariant information in particular domains. Soft modules provide strong, genetically 

programmed constraints on how specific types of information are to be processed, what 

they refer to as the module’s “exoskeleton.” At the same time, they provide malleable 

“internal structures” that allow for learning in response to unique environmental inputs. 

These allow animals to acquire adaptively relevant information by accommodating 

within-category variability. For example, the “exoskeleton” of the face recognition 

system specifies certain invariant cues that are used to determine whether or not a 

stimulus is a face. At the same time, the “soft internal structures” process variability 

within the domain of faces, and allow us to discriminate between individuals on the basis 

of facial features. 

There are, no doubt, many recurrent but contingent aspects of an animal’s 

microenvironment that must be learned. This learning may be best performed by 

specialized learning mechanisms, soft modules, that allow for rapid and efficient learning 

of specific types of information. A paradigmatic example for humans is language, where 

the language acquisition device is specialized to learn the language spoken around the 

child. Although the language acquisition mechanism provides many strong, genetically 

programmed constraints, it is also sensitive to localized information (Geary & Huffman, 

2002; Pinker, 1994). The language acquisition device makes learning any human 

language an effortless task whereas the task is impossible for animals not so equipped.  
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There certainly are mechanisms facilitating learning certain types of recurrently 

important information. However, it does not follow that the language acquisition device 

or other “learning instincts” (Tooby & Cosmides, 1992) should be viewed as a general 

paradigm for all human learning — that human learning is always the result of domain-

specific systems that evolved to preferentially learn certain types of information. 

Language acquisition is more the exception than the rule in human learning. Unlike social 

learning and associative learning, there is a critical period for language, during which it is 

most efficient (Pinker, 1994; Spelke & Newport, 1998). Moreover, the capacity to 

acquire language can be selectively impaired. Children with Specific Language 

Impairment have normal intelligence, but their ability to acquire language is disrupted 

(Pinker, 1994). However, not all forms of learning can be selectively impaired, 

suggesting at least some learning mechanisms apply to a wide range of domains. 

Pavlovian Conditioning. Learning novel cause-effect relationships is an 

important type of learning in the natural world. Pavlovian conditioning allows animals to 

make opportunistic associations between local, transient events not recurrent in their 

EEA. In some cases, these associations recur sufficiently often to result in evolved biases, 

as in taste aversion learning in rats (e.g., Garcia & Koelling, 1966; Rescorla, 1980). 

However, we maintain that using a wide range of stimuli, animals are able to 

opportunistically satisfy evolved goals by making novel associations, as in Pavlov’s dogs 

learning that the sound of a bell would be followed by food — not a recurrent 

contingency in the animals’ EEA.  

It is useful to distinguish between domain-specific and domain-general 

mechanisms of classical conditioning. Domain-specific mechanisms rely on evolved 

connections between specific UCSs and specific classes of stimuli, as in taste aversion 

learning in rats. In contrast, domain-general classical conditioning is designed to detect 

transient, locally true associations among any detectable stimuli using general (and 
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fallible) “rules of thumb” that rely on very broad, general features of the environment. 

The main general predictors are contiguity (including temporal order and temporal 

contiguity) and contingency (reliable succession). These predictors reflect that causes are 

reliable predictors of their effects, that causes precede their effects, and that in general 

causes tend to occur in close temporal proximity to their effects (Revulsky, 1985; 

Staddon, 1988). Causes that are temporally far removed from their effects are difficult to 

detect, and the temporal contiguity of cause and effect is a general feature of the world. 

The fact that there are exceptions, as in taste aversion learning, where non-contiguous 

causes have a special status because of the evolutionary history of the animal, does not 

detract from the general importance of temporal contiguity. From the animal’s 

perspective, in the absence of such a prepared association, the best default condition is to 

suppose that causes precede the UCS and are temporally contiguous. While temporal 

contiguity is neither a necessary nor a sufficient condition for associating events, in 

general it is a main source of information on causality (Shanks, 1994).  

The general learning mechanism is also designed so that several pairings of 

stimuli for which there are no evolved linkages provide more information than one 

pairing, that repeated occurrences of UCSs in the absence of a particular stimulus make it 

unlikely that the UCS will be paired with that stimulus (UCS habituation), that the 

physical intensity of a stimulus increases its likelihood of being framed as a CS, that 

repeated non-reinforcement of a previously reinforced association will lead to extinction, 

and that animals are likelier to forget associations with greater intervals of time, which 

makes adaptive sense because environments are continuously changing (Revulsky, 1985). 

Humans and animals are able to make associations between a wide range of 

stimuli in probing for causal relations (Dickinson, 1994; Shanks, 1994). Since the world 

is not an entirely predictable place, there is no reason to suppose organisms would be 

restricted to mechanisms designed to find causal relationships between specific sources 
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of recurrently connected events. Domain-general mechanisms designed to 

opportunistically detect associations among any discriminable stimuli would be of 

obvious advantage, and available evidence indicates that such mechanisms have evolved.  

Exactly how humans and animals detect associations remains in dispute, but the 

mechanisms certainly do not appear to be restricted to highly delimited sets of inputs 

recurrently linked to specific goals (UCSs) in the EEA. Mechanisms of classical 

conditioning probe the world for novel contingent relationships between experienced 

stimuli and evolutionarily important UCSs — relationships that may be transient and only 

locally true. These mechanisms imply at least some evolved machinery. For example, 

Gallistel (1990, 1994, 2000) proposes that classical conditioning in animals derives from 

an evolved foraging mechanism specialized to compute associations between stimulus 

conditions and rates of reinforcement, and is sensitive to temporal alterations in the 

contingency between stimulus conditions and reinforcement. The mechanism detects 

predictive relationships between a wide range of stimuli and a UCS. Thus it solves 

problems that are multivariate (i.e., many different events can predict the UCS), non-

stationary (i.e., the contingencies between CSs and UCSs can change at any time), and 

arrayed in a time series (i.e., learning the temporal dependence of one event on another). 

Human associative learning is also multivariate: We are highly sensitive to contingency 

among a wide range of arbitrarily chosen stimuli (including color patches, dot patterns, 

schematic faces, slides of skin disorders, pseudo-words, phrases, and artificial 

grammars), and between actions (e.g., key pressing) and arbitrarily chosen outcomes 

(e.g., Shanks, 1994).  

At a functional level, such a learning mechanism is an adaptation as we have 

defined it: It is a system of inherited and reliably developing properties designed by 

natural selection to solve an adaptive problem, in this case, the need to adapt to 

constantly changing, locally true information. It is a domain-general adaptation because it 
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functions to adapt the animal to non-recurrent, constantly changing relationships between 

all available stimuli that signal the occurrence of other stimuli, including those that serve 

as cues for satisfying evolved goals (UCSs). The mechanism is domain-general and 

unencapsulated because the stimuli linked to reinforcement (i.e., the CSs) are any 

stimulus detectable by the animal; there is no proprietary database except in the vacuous 

sense that any stimulus available to the animal may be linked with reinforcement. 

Learning and Fear. The fear system in humans and animals provides a good 

illustration of the intertwining of domain-specific with domain-general learning 

mechanisms. Certain stimuli recurrently associated with danger in the EEA are 

particularly easy to acquire and difficult to extinguish (e.g., Öhman & Mineka, 2001; 

Seligman, 1971). The fear system is therefore selective in its inputs because some stimuli 

more easily induce fears: “Evolutionary contingencies moderate the ease with which 

particular stimuli may gain control of the module” (Öhman & Mineka, 2001, p. 488). 

However, other stimuli can gain control of the fear system. The adaptiveness of 

domain-general aspects of the fear system can be seen from data showing that when the 

UCS is highly aversive or when a CS without any evolutionary significance is known to 

be very dangerous, the differences between evolutionarily primed fears and non-

evolutionarily primed fears disappear. Thus pointed guns are a very potent stimulus for 

fear in our culture saturated with media reports and dramatizations of shootings, with the 

result that guns activate the fear system in a manner indistinguishable from evolutionarily 

prepared stimuli like snakes and spiders. Hugdahl and Johnsen (1989) found the stimulus 

of a gun pointed at the subject followed by a loud noise showed superior conditioning 

compared to slides of snakes. Moreover, the CS of the gun pointed at the subject was 

nearly identical in extinction rate to a snake pointed at the subject when both were 

followed by a shock. The results indicate prolonged experience with stimuli such as 

pointed guns associated with intensely aversive outcomes eventually leads to enhanced 
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connections in the amygdala that “function like evolutionarily prepared associations” 

(Öhman & Mineka, 2001, p. 513). Similarly, Sutton and Mineka (cited in Öhman & 

Mineka, 2001) did not find a covariation bias for images of a knife-wielding male dressed 

in black under normal, non-traumatic conditions but did find a covariation bias similar to 

that for evolutionarily prepared stimuli among students primed by real-life reports of 

local knife-wielding criminals and a stabbing on campus.3 In this case, fear of a person 

wielding an item that was not an evolutionary danger produced the sort of bias typically 

found with evolved fears. Similarly, Lautch (1971) found that intense trauma could result 

in phobias even toward normally benign objects with no evolutionary prepotency.  

Domain-generality is also implied by data indicating there are two different 

learning systems relevant to fear in animals and humans (LeDoux, 1996; Öhman & 

Mineka, 2001). The inputs to the amygdala fear system include prepared connections 

between fear responses and evolutionarily recurrent stimulation, although, as we have 

seen, non-prepared stimuli also have access to the system. The domain-general 

associative learning system in the hippocampus is activated in attempts to link any and all 

available stimuli to aversive UCSs, including a range of contextual stimuli. Öhman and 

Mineka (2001) suggest this system typically functions in novel and unnatural situations 

typical of laboratory studies on animals where the aversive UCS is very motivating and 

where picking up any and all available information on cues related to the appearance of 

the UCS may be vital. With humans, Campbell, Sanderson, and Laverty (1964) found a 

long-lasting conditioned fear response to an arbitrary tone CS following a single 

traumatic event involving the suspension of breathing due to a drug injection. There was 

no extinction even at a follow-up 3 weeks after the experiment. The drug did not cause 

pain, but the experience was described by subjects as “extremely harrowing” (p. 632).  

In conclusion, the fear system fails to qualify as a module because stimuli with 

no phylogenetic importance can serve as CSs for activating the system, especially if they 
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are intensely aversive. Domain-general learning mechanisms of classical conditioning 

function both in mildly aversive situations without the involvement of the amygdala fear 

system and in intensely aversive situations with involvement of the amygdala fear system 

where any and all available information on contingency is of critical adaptive importance. 

Nor is the system encapsulated because domain-general cognitive mechanisms are able to 

influence the effectiveness of UCSs in producing fear CRs. Experience with dangerous 

objects also influences expectations that such objects will have aversive effects and 

results in stronger fear CRs that are more resistant to extinction. 

Instrumental Conditioning. Instrumental conditioning allows animals to 

opportunistically assess the effects of their own behavior. An animal without the ability 

to learn contingencies between its actions and their consequences would have to rely on 

evolved connections between specific stimuli and specific behaviors. Such a strategy 

would suffice in a stable, predictable world but would prevent animals from being able to 

opportunistically take advantage of novel, serendipitous, and non-recurrent contingencies 

between its behavior and the satisfaction of evolved goals; such animals would not be 

able to alter their behavior in situations where the goal-related consequences of behavior 

vary. For example, in laboratory studies, behavior that satisfies the evolved goal state of 

hunger is strengthened when rats learn to push up and down on levers to obtain food. 

Levers useful in obtaining food are not a part of the animals’ EEA, but rats are designed 

to be able to take advantage of novel, serendipitous associations between their behavior 

and the availability of food. Animals are able to perform a wide range of behaviors that 

are not species-typical foraging behaviors to satisfy their evolved goal of assuaging 

hunger. Similarly, humans, to the great benefit of TV programmers, can be induced to do 

virtually anything within the realm of what is physically possible for them if it results in 

rewards. Organisms unable to take advantage of such novel contingencies — 

contingencies not recurrently present in its EEA — would clearly be at a disadvantage.  
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Natural selection has sometimes resulted in certain default activities occurring as 

prepotent responses to situations of reward or danger (Staddon, 1988). For example, 

raccoons wash any small object that is strongly associated with food, while pigeons tend 

to peck anything strongly associated with food. Natural selection has also operated to 

make certain operants easier to learn than others. For example, bees more easily learn to 

switch their nectar gathering behavior to new flowers (switch learning) and find it 

difficult to learn to return to the same flower that previously had nectar (stay learning) — 

presumably a reflection of evolutionary pressures linking a particular behavior and a 

particular goal (Cole, Hainsworth, Kamil, Mercier & Wolff, 1982). This situation 

represents a conflict between evolved linkages between action and inference versus 

general cues of contingency and temporal contiguity for engaging in actions that result in 

reward. The interesting point is that bees are able to master the stay learning condition 

eventually; eventually the domain-general mechanism overrides the domain-specific 

mechanism. In the absence of evolved biases, the domain-general instrumental 

conditioning mechanism is able to take advantage of novel, serendipitous associations 

between the animal’s behavior and various rewards and punishments. The best general 

cues for this are contingency and temporal contiguity (Staddon, 1988). 

Tooby and Cosmides (1992, p. 95) claim that support for domain-generality in 

learning relies on data from “experimenter-invented, laboratory limited, arbitrary tasks.” 

They criticize traditional learning experiments for not focusing exclusively on 

ecologically valid, natural tasks — tasks that deal with problems that were recurrent in 

the animal’s EEA. We agree that investigations of such tasks are likely to reveal 

specialized learning mechanisms in some cases. However, an equally remarkable aspect 

of learning is that pigeons can learn to peck keys to satisfy their evolved goals of staving 

off hunger and eating tasty foods. Although pecking for food is undoubtedly a species-

typical behavior for pigeons, pigeons, like rats learning to push levers, are also able to 



40  Evolution of Domain-Generality 

learn a variety of arbitrary, experimenter-contrived behaviors that are not components of 

the animal’s species-typical foraging behavior. In other words, they are able to solve a 

fundamental problem of adaptation (getting food) in a novel and even arbitrary 

environment that presents few, if any, of the recurrent associations between the animal’s 

behavior and obtaining food experienced in the animal’s EEA. Similarly, humans are able 

to learn lists of nonsense syllables — another example highlighted by Tooby and 

Cosmides (1992), despite the fact that learning such lists was not a recurrent problem in 

the EEA. People can learn such lists because their learning mechanisms can be harnessed 

to new goals, as in getting course credit as a subject in a psychology study. 

In general, we hypothesize that neither operant nor classical conditioning evolved 

to exclusively link specific events or behaviors recurrent in the EEA. The mechanisms 

underlying these abilities imply a great deal of evolved machinery, and there are 

important cases where evolution has shaped learning in ways that depart from domain-

generality. Nevertheless, there is no proprietary database for garden-variety examples of 

operant and classical conditioning; nor is there evidence the information available to 

these mechanisms is typically encapsulated. In general, there is no characteristic input to 

these systems, because the input to associational mechanisms of rats and humans verges 

on whatever is detectable by the sense organs, and operant behaviors span virtually the 

range of physically possible motor behaviors. Because of their domain-generality, these 

mechanisms allow humans to solve problems with features not recurrent in the EEA.  

Social Learning. Social learning is also a domain-general adaptation. It occurs 

not only among humans but also among many birds and mammals. For example, rats can 

learn new means of obtaining food rewards by observing conspecifics (Heyes, Dawson & 

Nokes, 1992). Terkel (1996) showed social learning of a method for opening pine cones 

allowed the Black rat (Rattus rattus) to occupy a new ecological niche, an illustration of 

the utility of learning for adapting to novel opportunities not characteristic of the animal’s 
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EEA. Most social learning among animals functions to improve foraging efficiency by 

allowing animals to take advantage of novel but transient information rather than to 

create cultural traditions between generations (Laland, Richerson & Boyd, 1996). Reader 

and Laland (2002) provide evidence that among primates social learning co-evolved 

along with increased size of the executive functions, tool use, and ability to innovate.  

These findings are compatible with supposing that social learning becomes increasingly 

important as animals are able to discover innovative solutions via the processes 

underlying general intelligence. 

There are a variety of methods for the social transmission of information, ranging 

from social facilitation (learning facilitated by the presence of a conspecific) to true 

imitation (one animal copies another’s specific behavior and the behavior is not 

reinforced and not in the natural repertoire of the observer; Zentall, 1996). Moore (1996) 

shows parrots are able to socially learn, without reinforcement, a wide range of behaviors 

that are not part of their species-typical repertoire. Although there are controversies about 

the extent to which non-human primates are able to exhibit true imitation (see Tomasello 

1996), there is no question they are able to acquire new behaviors from socially 

transmitted information without reinforcement. Great apes are able to imitate a wide 

range of behaviors (e.g., using a hammer or a paint brush) modeled by people (Whiten & 

Ham, 1992). Human infants, at least beyond one year of age, are “imitative generalists” 

who “imitate a wide variety of acts in varied situations. Facial, manual, vocal, and object-

related imitation has been documented; familiar and novel acts are imitated; both 

immediate and deferred imitation occurs; imitation can take place in the original setting 

or be transferred to novel contexts” (Meltzoff, 1996, p. 361). 

Tooby and Cosmides (1992, p. 118) acknowledge the importance of social 

learning that results in “a large residual category of representations or regulatory 

elements that reappear in chains from individual to individual — ‘culture’ in the classic 
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sense.” However, social learning tasks “would be unsolvable if the child did not come 

equipped with a rich battery of domain-specific inferential mechanisms, a faculty of 

social cognition, a large set of frames about humans and the world drawn from the 

common stock of human metaculture, and other specialized psychological adaptations 

designed to solve the problems involved in this task” (Tooby & Cosmides, 1992, 119). 

 There is no question social learning requires a great deal of evolved machinery, 

but this is insufficient to establish social learning as domain-specific. To be interesting, 

the argument must entail the content of what is learned is evolutionarily circumscribed. 

We acknowledge the importance of evolved machinery, including evolved frames in 

social learning tasks (see below). However, this does not imply the learning system 

evolved to solve a particular, highly discrete problem recurrent in the EEA. Nor is there 

evidence for a proprietary database for social learning, or that the information available to 

social learning mechanisms or transmitted by social learning mechanisms is restricted to 

a specific set of messages important for adaptation in the EEA. Social learning systems in 

humans are domain-general in the critical sense that they allow us to benefit from the 

experience of others, even when their behavior was not recurrently adaptive in the EEA 

but is effective in achieving evolved goals in the current environment. This shows the 

importance of social learning in adapting to the contemporary world. 

There are important evolved mechanisms guiding human social learning in 

adaptive ways. Parent-child affection channels children’s social learning within the 

family (MacDonald 1988, 1992, 1997). The human affectional system is designed to 

cement long-term relationships of intimacy and trust by making them intrinsically 

rewarding (MacDonald, 1992). A continuing relationship of warmth and affection 

between parents and children is expected to result in the acceptance of adult values by the 

child, identifying with the parent, and a generally higher level of compliance — “the 

time-honored concept of warmth and identification” (Maccoby & Martin, 1983, p. 72). 
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The finding that warmth of the model facilitates imitation and identification has long 

been noted by social learning theorists (e.g., Bandura, 1969). Besides the framing effect 

of warmth, evolution has also shaped children’s preferences for other features of models 

such as dominance, high social status, and similarity (MacDonald, 1988). 

For humans, the types of behaviors that can be successfully transmitted by social 

learning are not limited to discrete sets behaviors useful to meeting recurrent challenges 

of the EEA. They are limited only by general cognitive and motor limitations: 

Limitations on the informational complexity of modeled behavior, limits on attentional 

processes and memory, and limitations on human motor abilities (Bandura, 1969; 

Shettleworth, 1994). Even among rats, Kohn and Dennis (1972) found that animals that 

were able to observe other rats solve a discrimination problem (and thus avoid shock) 

were quicker to learn this discrimination than rats that were prevented from the 

opportunity to observe. The patterns that were discriminated were entirely arbitrary and 

in no sense elements of the EEA. The response pattern involved motor activity to escape 

the shock by going through the appropriate door. The mechanism therefore was not 

domain-specific: It was not triggered by a highly delimited stimulus recurring in the EEA 

and it did not result in a highly discrete response designed specifically to deal adaptively 

with this problem. 

In short, specialized learning mechanisms are only part of the story of human and 

animal learning. There are many non-recurrent events that are learnable without 

specialized mechanisms and being able to learn them is adaptive. Apart from well-known 

examples where learning is highly biased, learning mechanisms are domain-general. 

Conclusion 

Evolutionary psychology has been of great value in placing evolutionary thinking 

at the center of cognitive science. However, by erecting an equally one-sided paradigm in 

opposition to the “Standard Social Science Model,” it runs the risk of over-emphasizing 
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modularity and ignoring the vast data indicating a prominent role for domain-general 

mechanisms in human and animal cognition. As described here, domain-general 

mechanisms are not weak “jacks of all trades but masters of none.” They are extremely 

powerful but fallible mechanisms that are the basis for solving a fundamental problem 

faced by all but the simplest organisms — the problem of navigating constantly changing 

environments that present new challenges that have not been recurrent problems in the 

EEA. Most importantly, the domain-general mechanisms at the heart of human cognition 

are responsible for the decontextualization and abstraction processes critical to the 

scientific and technological advances that virtually define civilization.  

The processes discussed here are not meant to be an exhaustive examination of 

domain-generality in cognition and learning, but merely illustrative. We suppose that a 

great many other processes will yield to the type of analysis presented here, including 

other forms of reasoning and induction besides analogical reasoning, memory and 

categorization, developmental plasticity, and large areas of personality psychology 

where, as in the analysis of the fear system presented above, there is a complex interplay 

between evolved emotional responses to specific stimuli as well as the ability to recruit 

emotional systems to confront entirely novel dangers and opportunities (Chiappe & 

MacDonald, 2002).
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Footnotes 

1The authors are listed in alphabetical order. 

2An example of if-only thinking: Who is more foolish, a man who sat tight when 

the stock he wanted to invest in went up or the man who sold some other stock to buy the 

losing stock (see Stanovich & West, 1998). 

3In covariation bias studies, subjects judge the extent to which there is a 

covariation between fear-relevant stimuli and aversive outcomes. Typical findings are 

that there is a bias such that people over-estimate the extent to which evolutionarily 

significant stimuli are associated with aversive outcomes (e.g., Tomarken, Mineka, & 

Cook, 1989). 
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Figure 1 

Hierarchical model of motivation showing relationships between domain-specific and 

domain-general mechanisms (after Emmons, 1989). 

Level 1 EVOLVED MOTIVE DISPOSITIONS 

Level 2 PERSONAL STRIVINGS 

Level 3 CONCERNS, PROJECTS, TASKS (Utilize Domain-General Mechanisms) 

Level 4 SPECIFIC ACTION UNITS (Utilize Domain-General Mechanisms) 

 

EXAMPLE: 

Evolved Motive Disposition   INTIMACY 

 

 

Personal Striving INTIMATE RELATIONSHIP WITH A GIVEN PERSON 

 

 

Concern, Project, Task Arrange Meeting     Improve appearance  Get promotion 

 

 

Action Units  Find phone number     Begin dieting    Work weekends  
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