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Abstract: We study when cooperation and conflict emerge in games such as the
Prisoner’s Dilemma. We make use of two simple ideas: existing strategies are more likely
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achieved. When identification is imperfect, we characterize the degree of cooperation and
conflict.
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1. Introduction

Prisoner’s dilemma type games have found widespread application in the study of

problems ranging from public goods, to the conflict between nations and to the study of

collusion in oligopoly. It is well known that both cooperation and conflict are possible in

settings ranging from that of repeated games to games with overlapping generations of

players [Kandori, 1992a], and populations of players with information about past play

conveyed by information systems [Kandori, 1992b]. While versions of the folk theorem

[Fudenberg and Maskin, 1986] assure us that both cooperation and conflict are

possibilities, there is little systematic theory to tell us when one outcome emerges rather

than the other. This paper attempts to provide such a theory.

Our starting point is a model of evolutionary learning.  Players in this model learn

from other players through a process of imitation: Typically, when a player changes his

behavior he will choose the best strategy used by other players.  Sometimes the player

will imitate some other player regardless of how successful this player is.  In addition,

there is a small probability that the player innovates, that is, introduces a strategy

currently not in use by any other player.  We assume that an individual is far more likely

to imitate an existing, possibly sub-optimal, strategy than to adopt a strategy that is not in

use by any other player.

Players are randomly matched into pairs to play a Prisoner Dilemma-type game.

Unlike standard pairwise matching games, we allow a player's strategy to depend on the

opponent's type.  The type of a player is in turn determined by his behavior.  We interpret

this model as describing a situation where strategies are rules of thumb that players use in

a wide variety of circumstances.  Players are committed to a particular rule because it is

too costly to change behavior in any particular match.  Players can identify the opponent's

rule either because they observe other interactions of the opponent or because such rules

affect observable features of the opponent such as his language or his gestures.

For example, consider the strategy that takes a cooperative action if the opponent

is of the same type, that is, has chosen the same strategy, and a punishment action if the

opponent is of a different type.  Clearly, it is optimal for a player to adopt this strategy

when he expects his opponents to use it.  On the other hand, consider the rule that defects

independently of the opponent's type.  Again, this rule is an optimal choice when the
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opponent is expected to use it.  Thus, with a sufficiently rich set of types, these games

typically have multiple equilibria that resemble the equilibria in repeated games.  Our

evolutionary model of imitation allows us to characterize the behavior that emerges in the

long-run.

When it is possible to identify the opponent’s behavior without error, we show

that the long-run equilibrium is efficient. If we observe the system through time, we may

also observe brief bursts of conflict in which players attempt to maximize the difference

between their own payoffs and that of players using an opposing strategy.

We also study, albeit in a more restricted set of environments, the long-run

outcome when identification of opposing strategies is imperfect. Here we show that in the

long-run strategies that are informationally dominant emerge. Informational

imperfections lead players to place too much weight on their own self-interest relative to

both the common good and the punishment of opponents. In particular, if information is

sufficiently poor, the static Nash equilibrium of the underlying game emerges as the

unique long-run outcome. There are a variety of intermediate cases in which the intensity

of cooperation and conflict depends on how reliably the opponent’s strategy can be

identified. In some circumstances, the unique long-run equilibrium may actually be worse

than the static Nash equilibrium.

Our work stems from existing work on evolution in economic systems. In two

influential papers Kandori, Mailath and Rob [1993] and Young [1993] showed how

introducing random innovations (mutations) into a model of evolutionary adjustment

enables predictions about which of several strict Nash equilibria will occur in the very

long run. Key to this result is the possibility that strategies that perform poorly may be

introduced into the population in sufficient numbers through innovation that they begin to

perform well. Using this method, they and other researchers have been able to

characterize when cooperation will emerge in coordination games using the criterion of

risk dominance.

In this paper, we give a different account of the spread of new strategies.  Once a

player introduces a new strategy, a process of imitation propagates the innovation. This

modified propagation mechanism makes it easier to find long-run equilibria.  First, the

long-run limit contains only pure strategies. Second, it is sufficient that a strategy profile

beat all others in pairwise contests. As we illustrate through examples, this is implied by,
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but weaker than, the criterion of ½-dominance proposed by Morris, Rob and Shin [1993].

Ellison [2000] shows that if a strategy is ½-dominant, it is the unique long-run outcome.

In addition to the work mentioned above, there are several other papers that have

a connection to our results. Bergin and Lipman [1994] show that the relative probabilities

of different types of noise can make an enormous difference in long-run equilibrium; here

we explore one particular theory of how those relative probabilities are determined. Van

Damme and Weibull [1998] study a model in which it is costly to reduce errors, and

show that the standard 2x2 results on risk dominance go through. Johnson, Pesendorfer

and Levine [2000] show how the standard theory can predict the emergence of

cooperation in a trading game with information systems of the type introduced by

Kandori [1992b].  By way of contrast, the modified model of evolutionary learning

presented here allows us to study more complex games.  Finally, Kandori and Rob [1993]

have a model in which winning pairwise contests is sufficient for a strategy to be the

long-run outcome. However, in their model winning all pairwise contests implies 1/2-

dominance, which is not true in our applications.

2. The Model and Basic Characterization of Long Run Outcomes

In this section, we develop the basic characterization of long-run outcomes. The

subsequent section applies this result to the game discussed in the introduction.

We study a symmetric normal form game played by a single population of

players. There are finitely many pure strategies, denoted by S 3� .  Mixed strategies are

vectors of probabilities denoted by T � 4 .  The support of a mixed strategy T  is

denoted by SUPP� 	��[S\ �S	��]T T .  A mixed strategy is called pure if it puts unit weight

on a single pure strategy; abusing notation, we denote by S  the mixed strategy that puts

probability one on S .  The utility of a player depends on his own pure strategy and the

mixed strategy played by the population. It is written � � 	U S T  and continuous in T . A

prototypical example is a game in which players from different populations are randomly

matched to play particular player roles.

There are M  players in the population, each of whom plays a pure strategy.  The

distribution of strategies at time T  is denoted by 
T

T � 4 . Starting with an initial

distribution
�

T , the distribution 
T

T  is determined from 
�T

T
�

 according to the following

“imitative” process.
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1) One player I  is chosen at random. Only this player changes his strategy.

2) With probability #F  player I  chooses from 3  randomly using the probabilities

�T
T
�

. This is called imitation: strategies are chosen in proportion to how frequently

they were played in the population in the previous period.

3) With probability NF  player I  chooses each strategy from 3  with equal probability.

This is called innovation: strategies are picked regardless of how widely used they

are, or how successful they are.

4) With probability � N# F F� � player I  randomizes with equal probability among the

strategies that solve

�
�SUPP� 	

MAX � � 	
T

TS
U S

T

T
�

��
.

This is called a relative best response: it is the best response among those strategies

that are actually used by the particular population.

This process gives rise to a Markov process -  on the state space M4 � 4

consisting of all mixed strategies consistent with the grid induced by each player playing

a pure strategy. The process -  is positively recurrent, and so has a unique invariant

distribution FN . Our goal is to characterize 
�

LIM F

F
N N

l

w .

Our main assumption is that imitation is much more likely than innovation.

Unlikely Innovation: N M� .

Unlikely Innovation implies that, as �F l , the probability that every player

changes strategy by imitation is much greater than the probability that a single player

innovates.  This assumption is maintained throughout the paper.

The possibility of imitation and the fact that imitation is much more likely than

innovation distinguishes our model from the model of Kandori, Mailath and Rob [1993],

or Young [1993].  Results similar to the ones obtained by those authors would hold in our

model when �# �  and when the population is large.3

                                                
3 For a large population the difference between the relative best response analyzed here and a true best
response is typically insignificant since a bounded number of innovations ensures that all strategies are
played. As long as 

�T
T
�

 is interior the relative best response is of course a true best response.
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Like much of the existing literature, we consider a single population.4 In our

model the single-population assumption implies that all players are a priori identical, and

that behavior is imitated throughout the population.

We first establish a basic result about the limit distribution 
�

LIM F

F

N N
l

� .

Unlikely innovation implies that mixed strategies are less stable than pure strategies. A

mixed strategy can evolve into a pure strategy purely through imitation, while a pure

strategy cannot evolve at all without at least one innovation.  Theorem 1 confirms this

intuition by showing that the limit invariant distribution N  places weight only on pure

profiles in M4 .

Theorem 1: LIM FN N� exists and � 	 �N T �  implies that T is a pure strategy.5

Our main characterization result (Theorem 2) shows that if a pure strategy beats

all other strategies in pairwise contests, then it is the unique stochastically stable state.

We begin by explaining what it means to win pairwise contests.  For � �Bb b , the

mixed strategy that plays S  with probability B  and S%  with probability � B�  is denoted

by �� 	S SB B� � % .

Definition 1: The strategy S  beats S%  iff

� � �� 	 	 � � �� 	 	 �U S S S U S S SB B B B� � � � � �% % %

for all ��� �Bb � .

Thus, a strategy S  beats S%  if S  yields higher utility against any combination of S  and S%

that puts more weight on S  than on S% .  In Definition 2, we weaken this concept to allow

for ties.

Definition 2: The strategy S  weakly beats S%  iff

� � �� 	 	 � � �� 	 	 �U S S S U S S SB B B B� � � � � �% % %

for all ��� �B� �  and  	 
 	 
� � � �
� � � �� � �U S S S U S S S� � � �% % % . The strategy S  is

tied with S%  iff

                                                
4 See Hahn [1995] for an extension of the standard model to multiple populations. Friedman [1998]
considers a model in which players are sometimes matched with opponents from the same population and
sometimes with opponents from a different population.
5 A similar result in the context of genetic algorithms may be found in Dawid [1999].
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� � �� 	 	 � � �� 	 	 �U S S S U S S SB B B B� � � � � �% % %

for all � �Bp p .

A strategy “beats the field” if it beats every other pure strategy.

Definition 3: If S beats all S Sv% we say that S beats the field. If for all S Sv%  either

S weakly  beats S%  or is tied with S%  we say that S  weakly beats the field.

In Theorem 2, we show that if strategy S  beats the field then S  is the unique long

run outcome.  If strategy S  weakly beats the field then the long run distribution must

place strictly positive probability on S .  In addition, S  and S%  must get the same payoff

against a population that plays S  and S%  with equal probability.  In the applications

below, we will use this property to show that S%  must be similar to S .

Theorem 2: If M  is sufficiently large and S  beats the field then � 	 �SN � . If M  is

sufficiently large and S weakly beats the field then � 	 �SN � . Moreover, if � 	 �SN �%

then � � � �
� � � �� � 	 � � 	 �U S S S U S S S� � � �% % % .

To gain an intuition for Theorem 2, consider a pair of pure strategies, � �S S . Let

� �	0 S Sl  denote the probability that the Markov process to move from the state where

all players choose the strategy S  to a state where all players choose �S . We first compute

an upper bound for this probability. Note that one innovation is required to leave any

state where all agents play the same strategy. Moreover, since players choose a relative

best response with probability close to one, we need a number of imitations that ensures

that �S  is a relative best response. Otherwise, the Markov process simply returns to the

state where all players choose S . Assume that S  beats �S .  Since S  yields a strictly

higher payoff than �S  to �� 	 �� ���S SB B B� � p , at least ��M  imitations are required

for the transition from S  to �S  when M  is even. For small F , we therefore conclude that

	 
 ��� �	 MN0 S S #F Fl b

A similar argument allows us to find a lower bound on the transition from the state where

all players choose �S  to the state where all players choose S . The transition requires

again one innovation and, since S  beats �S , at most �� �M �  imitations. A lower bound

for the transition probability is therefore
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 �� �� � 	 MN0 S S #F F �l b

Thus, the ratio of the two probabilities is

	 

	 


�� �

��

� � 	 �
� �	

MN

MN

#0 S S
0 S S ##

F F
FF F

�l
x �

l

and hence we conclude that it is far more likely that the Markov process makes a

transition from �S  to S  than it is to make a transition from �S  to S . By Theorem 1 only

pure strategies are candidates for states to occur with significant probability in the long

run when F  is small.  Moreover, if S  beats the field, the argument above applies to every

strategy S Sv% . Hence, it follows that in the long run only the state where all players

choose S  can occur with significant probability.

The hypothesis, that a strategy beats the field is connected to the idea of ½-

dominance introduced by Morris, Rob and Shin [1993]. The concept of ½-dominance

says that when half or more of the population is playing S  against any other combination

of strategies, it is a best response to play S . The concept here is weaker in two respects:

first, S  must only beat pure profiles, not arbitrary combinations of strategies. Second, S

must win only in the sense of being a relative best-response, it need not actually be a

best-response; a third strategy may actually do better than S , and this is significant as we

will see in examples below. On the other hand, ½-dominance clearly implies winning all

pairwise contests, so if there is a ½-dominant strategy, from Morris, Rob and Shin [1993]

it is stochastically stable with respect to the usual evolutionary dynamic, and it is also

stochastically stable when innovation is unlikely.

3. Matching Games with Behavioral Types

In this section, we apply the characterization results to a pairwise matching game.

Every period players are matched into pairs to play a symmetric normal form game. Prior

choosing an action, each player receives a “signal” containing information about how his

opponent will behave in the game. We examine how the long-run outcome depends upon

the amount of information contained in the signals.
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The underlying game played in each match is symmetric. The action space for

both players is !  and the payoff of a player who takes action A  and whose opponent

takes action �A  is

� � �	5 A A

Players simultaneously choose strategies from an abstract strategy space 3 .

Strategies serve two roles. Depending on the chosen strategies, players receive

information about the opponent’s strategy choice. Based on that information, each

strategy takes an action A !� .  Thus, strategies serve a dual role: first, they influence the

information that is generated about the player and his opponent and second, they govern

the behavior as a function of the generated information.

Formally, each player receives a signal Y 9� , a finite set. The probability of

receiving a signal depends on the strategies used by both players and is given by

� \ � �	Y S SQ  if the player uses S  and the opponent �S . These signals are private

information. In our interpretation, a signal reflects what the opponent can learn about the

player’s behavior prior to the interaction.

Each strategy also determines how the player will respond to different signals.

That is, each strategy S  gives rise to a map (which we denote by the same symbol)

�S 9 !l . Notice that several strategies may induce the same map, yet differ in the

probability with which they send signals. We will assume that for every map from signals

to actions there is some strategy that induces that map.

Assumption 0: If �F 9 !l  there is a strategy S 3�  with � 	 � 	S Y F Y� .

It bears emphasis that the space of signals is necessarily smaller than the set of

strategies: the cardinality of the space of strategies is at least 9! , which is greater than

that of 9  provided that there are at least two signals.

To motivate this construction, assume that strategies govern the behavior of

agents in many games.  Players are committed to a particular strategy because it is too

costly to change behavior in any particular match.  If a player can observe previous

interactions of the opponent he is able to predict the opponent’s behavior. Alternatively,

it may be the case that strategies are directly observable. An individual who rarely lies

may blush whenever he is dishonest. Seeing the opponent blush indicates that he is
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unlikely to be dishonest in future interactions. (This example is due to Frank (1987)). The

“signal” encapsulates such information in our model.

As an example, suppose that [���]9 � . Further assume that � � \ �� 	 �Y S SQ � �

if �S S�  and � � \ �� 	 �Y S SQ � �  if �S Sv . Thus, if two players meet who use the same

strategy then both receive the signal 0 whereas when two players meet who use different

strategies then both receive the signal 1. In other words, players recognize if the opponent

uses the same strategy or a different strategy prior to play. This example is important,

because it turns out that strategies that recognize themselves are likely to emerge in the

long-run equilibrium.

Note that signals affect payoffs only indirectly by affecting behavior.  If player I

uses strategy S  and his opponent uses strategy �S  then the expected payoff of player I  is

given by

�

� � 	� �� �		 � \ � �	 � � \ �� 	 � �	
Y 9 Y 9

5 S Y S Y Y S S Y S S SQ Q T
� �

� �

Therefore, the function � � 	U S T  (as defined in the previous section) is given by

� �

� � 	 � � 	� �� �		 � \ � �	 � � \ �� 	 � �	
S 3 Y 9 Y 9

U S 5 S Y S Y Y S S Y S S ST Q Q T
� � �

� � � �

 We consider three scenarios. In the first – analyzed in section 3.1 – a player is

able to determine with certainty whether the opponent uses the same strategy as he does.

For this case, we show for a general class of utility functions that full cooperation will

emerge as the long run outcome. In the second scenario – analyzed in section 3.2 – we

consider the case of noisy identification of the opponent’s behavior for a restricted class

of utility functions. For that environment, we relate the degree of cooperation to the

ability of agents to identify types who use similar rules. The model of section 3.2

supposes a great deal of symmetry in the signaling mechanism.  The third scenario –

analyzed also in section 3.2 – replaces the symmetry assumption with an informational

dominance condition.
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3.1 Perfect Identification

The first scenario assumes that each player can identify with certainty whether the

opponent is using the same strategy.  For notational simplicity, we assume that there is

one signal, denoted by 
�

Y , that perfectly identifies that the opponent is using the same

strategy.

Assumption 1: There is a 
�

Y 9� such that for every S 3�  
�

� \ � 	 �Y S SQ �  and

�
� \ � �	 �Y S SQ �  for �S Sv .

We make two assumptions on 5 . Assumption 2 requires that there is no

asymmetric profile that makes both players strictly better off than any symmetric profile.

Assumption 2: � � �	 MAX � � 	 � �� 	 MAX � � 	
A A

5 A A 5 A A 5 A A 5 A A� º b

 If there is a public randomization device then Assumption 2 is always satisfied if we

include actions that may depend on the outcome of the public randomization.  In that

case, we can use a coin flip to decide which player is the row player and which player is

the column player.  Once roles are assigned, players choose the Pareto optimal actions.

Assumption 3 requires that there is an action A !�  that ensures that the player

gets a payoff that is at least as large as the payoff of his opponent.

Assumption 3: There is an A !�  such that � � 	 � � 	 �5 A A 5 A A� p  for all A !� .

Note that the payoff difference � �� 	 � � �	5 A A 5 A A�  defines a symmetric zero-sum game

and hence has a (possibly mixed) minmax strategy.  Assumption 3 says that this minmax

strategy is an element of ! , that is; the game defined by the payoff differences has a pure

minmax strategy.  Assumption 3 is always satisfied if we include the possibly mixed

minmax action as one of the elements of ! .

Let A  be a Pareto optimal symmetric outcome

ARGMAX � � 	
A !

A 5 A A
�

�

By assumption 0, there is a strategy 
�
S  for which.

�

�

�

IFÅ
� 	

IFÅ

A Y Y
S Y

A Y Y

£ �¦¦¦� ¤¦ v¦¦¥
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The strategy 
�
S  takes the Pareto efficient action when the opponent uses the same

strategy and punishes the opponent by taking action A  when the opponent chooses a

different strategy. Note that the punishment action maximizes the minimum difference

between the player’s payoff and his opponent’s payoff.

Theorem 3 shows that the long run outcome of the evolutionary dynamics will put

positive probability on the strategy 
�
S . Moreover, every other strategy S  that used with

positive probability is similar to 
�
S : when S  meets S  both players receive the payoff

� � 	5 A A ; when S  meets 
�
S  both players receive the same payoff.

Theorem 3: Under A0-A3, 
�

� 	 �SN � . If � 	 �SN �  then 
� �

� � 	 � � 	 � � 	U S S U S S 5 A A� �

and 
� �

� � 	 � � 	U S S U S S� .

Theorem 3 implies that if A  is the unique symmetric Pareto optimal outcome and

if � � 	 � � 	 �5 A A 5 A A� �  for all A Av  then 
�
S  is the unique outcome in the long-run

limit.  On the other hand, suppose there is some redundancy in the description of the

game because, for example, there may be other strategies that induce the same map as 
�
S

or because there is an action A)  with � � 	 � � 	�5 A A 5 A A�)
 for all A !� . In either case,

there are two or more strategies that satisfy the requirement of 
�
S .  These strategies differ

in extraneous detail only but will not recognize each other as the “same strategy”.  The

long-run distribution places positive weight on every such strategy and if we observe the

system for a long time we will typically observe each player using the same version of

�
S .  However, occasionally there will be a transition from one version of 

�
S  to another.

During this brief period of transition, players using different versions will punish one

another by choosing A , the action that maximizes the difference between the two player’s

payoff.

The proof of Theorem 3 in the Appendix shows that the strategy 
�
S  weakly beats

the field, that is; weakly beats every other strategy in a pairwise contest.  However, the

strategy 
�
S  need not be ½ dominant in the ordinary sense.  Suppose that the underlying

game is a Prisoner’s dilemma and let S%  be a constant strategy that always plays “defect”.

Suppose moreover, that there are signals that enable a strategy S  to play “defect” against

�
S  and “cooperate” against S% .  As defined above, 

�
S  plays  “cooperate” against 

�
S  and

“defect” otherwise.  Against � �
� �S S�  the strategy S%  does better than S  and therefore

S  is not ½ dominant. Such a strategy seems to serve no useful purpose except to make S
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look good against S . Our theory of infrequent innovation provides a rigorous account of

why we should not expect such strategies to play a role in determining the long-run

equilibrium: because they do not themselves do well against S  they will not remain

around long enough for players to discover that they should play S .

3.2 Gift Exchange and Imperfect Identification

In this section, we specialize to a simple additively separable structure. Each

action A  has a cost � 	C A  and yields a benefit � 	B A  for the opposing player.  The payoff of

a player who takes action A  and whose opponent chooses action �A  is

� � �	 � �	 � 	5 A A B A C A� �                                                  (1)

We can interpret this game as describing a situation where two players meet and

have an opportunity to exchange goods. The function C  denotes the cost of the good and

B  describes the benefit of the good for the opposing player.  Games with this utility

function resemble a prisoner’s dilemma in that the cost minimizing action is dominant.

We assume that � 	 �C A p , with � 	 �C A �  for some action eA !� .  Note that the

utility function (1) satisfies Assumptions 2 and 3.

In this section, we consider strategies that may not be able to identify with

certainty when the opponent is using the same strategy.  We first analyze how this noisy

information about the opponent’s behavior affects the strategies that emerge in the long

run.

To keep things simple, we begin by assuming that all strategies use the same

symmetric information structure described in Assumption 4.

 Assumption 4:

� 	 IFÅ �
� \ � �	

� 	 IFÅ �

P Y S S
Y S S

Q Y S S
Q

£ �¦¦¦� ¤¦ v¦¦¥

Thus, � 	P Y  describes the probability that a player has type Y  if he and his opponent use

the same strategy whereas � 	Q Y  describes the same probability when the two players use

different strategies. Suppose the prior probability that a player uses S  is B  and that he

receives the signal Y .  Then, the posterior probability that the opponent will also play

according to S  is
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� 	
� 	 �� 	 � 	

P Y
P Y Q Y

B
B B� �

.

This posterior is greater than B  when � 	 � 	P Y Q Y�  and less than B  when � 	 � 	Q Y P Y� .

The strategy 
�
S  is defined as follows.  For every signal Y  the action 

�
� 	S Y  solves

                        MAX � � 	 � 		 � 	 � � 	 � 		 � 	
A !

P Y Q Y B A P Y Q Y C A
�

� � �                                 (*)

We assume that the maximization problem (*) has a unique solution for every Y .  The

strategy 
�
S  rewards opponent types when � 	 � 	P Y Q Y�  and punishes opponent types

when � 	 � 	Q Y P Y� . In the limiting case where the type allows no inference about his play

( � 	 � 	P Y Q Y� ) the strategy 
�
S  minimizes the cost C .

Theorem 4, proven in the Appendix, shows that in the long run only strategies that

behave like 
�
S  are played.

Theorem 4: � 	 �SN �  if and only if 
�

� 	 � 	S Y S Y�  for all Y 9� .

When the signal is Y  the strategy 
�
S  takes the action that  maximizes

� 	 � 	
� 	 � 	

� 	 � 	
P Y Q Y

B A C A
P Y Q Y

�
�

�

Let S  denote the opponent’s strategy choice, and suppose that there a prior of �
�  that the

opponent is using 
�
S . In that case,

� �

� 	 � 	
0R� \ 	 �0R� \ 	

� 	 � 	 � 	 � 	
P Y Q Y

S S Y S S Y
P Y Q Y P Y Q Y

� � v �
� �

and therefore

� �

� 	 � 	
0R� \ 	 0R� \ 	

� 	 � 	
P Y Q Y

S S Y S S Y
P Y Q Y

�
� � � v

�

Hence, the objective function puts a larger weight on the opponent’s benefit when he is

more likely to use strategy 
�
S . In our gift exchange interpretation, the gift is decreasing as

the signal indicates an opponent that is more likely to be different.  It is worth

emphasizing that in a long-run stable outcome typically all players are choosing the same

strategy. Hence, the probability that the player is using 
�
S  is one, irrespective of the
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realization of the signal.  Nevertheless, players will punish each other for appearing to be

different. This implies that the equilibrium is inefficient.  Unlike the case of Theorem 3

where a socially efficient payoff was realized in the long-run stable outcome, here

inefficiencies persist because players respond to signals as if one-half of the population

were using a different strategy and hence needed to be punished.

In Theorem 4 every strategy generates the same information.  We now relax that

assumption and consider strategies that may differ in their ability to identify the behavior

of opponents.  For example, a strategy may have an advantage at determining whether the

opponent uses the same strategy.  Alternatively, a strategy may be good at masquerading

and hence be hard to distinguish from other strategies.

Specifically, consider the strategy 
�
S  defined above. This strategy uses a

symmetric information structure defined by � � 	P Q  and therefore generates the same

information for every opponent that does not use 
�
S . Suppose, however, that other

strategies are described by general signal distributions � \ � 	SQ ¸ ¸ .  Below, we define the

concept of informational dominance and show that if 
�
S  is informationally dominant, it

emerges as a long run outcome.

Consider a situation where only strategies 
�
S  and S  are played. Strategy 

�
S  is

informationally superior to strategy S  if the signal generated by 
�
S  provides better

information about the opponent’s strategy than the signal generated by S .  The signal

generated by 
�
S  provides better information (in the sense of Blackwell (1954)) than the

signals generated by S  if there is a non-negative matrix

	 

�

YZ Y 9 Z 9
M

� �

such that

�

��

� \ � 	 � 	�

� \ � 	 � 	�

YZ

Y 9

YZ

Z 9

YZ

Z 9

Z

Y S S P Z

Y S S Q Z

M

Q M

Q M

�

�

�

� �

�

�

�

�

�

In other words, the signals generated by � \ � 	SQ ¸ ¸  are a garbling of the signals generated

by 
�
S .
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The strategy 
�
S  is informationally dominant, if it is informationally superior to

every other strategy S .  Note that informational dominance only requires that strategy 
�
S

generates better information in situations where 
�
S  and one other competing strategy are

played.  Thus, 
�
S  may be informationally dominant strategy even though strategy S  does

better at identifying a third strategy S .

A trivial example of an informationally dominant strategy is a strategy that cannot

be distinguished from any other strategy.  In that case, 
�

� \ � 	 � \ � 	Y S S Y S SQ Q�  for all S

and hence strategy 
�
S  is informationally dominant even if strategy 

�
S  does not generate

any information, that is, � 	 � 	P Y Q Y�  for all Y .  This is a case where strategy 
�
S  is

informationally dominant because it successfully masquerades as other strategies.

Theorem 5 shows that when strategy 
�
S  is informationally dominant, it emerges

as an outcome of the long-run stable distribution. Moreover, every strategy that is a long-

run stable outcome is similar to strategy 
�
S . In particular, if � 	 �SN �  then the payoff

when S  meets S  is the same as the payoff when 
�
S  meets 

�
S .  

Theorem 5: If 
�
S  informationally dominant then,

�
� 	 �SN � . Moreover, for every

strategies S  with � 	 �SN �  we have 
� �

� � 	 � � 	U S S U S S�  and 
� �

� � 	 � � 	U S S U S S� .

In this section, we have restricted the informationally dominant strategy to

generate symmetric information, that is, generate the same information for every

opponent.  This allowed us to identify a behavior (a map from signals to actions) that is

successful against every opponent.  Hence, the symmetry assumption in this section is

more than a convenience. It implies that strategy 
�
S  is informationally superior to every

other strategy with a uniform interpretation of the signals.  If we give up the symmetry

assumption we must replace it with a requirement that preserves this uniformity. For

example, we could assume that there is a reference strategy S  such that any signal

realization generated by 
�
S  against an arbitrary opponent is at least as informative as it is

against strategy S .  Informational dominance would then require that the signal generated

against S  is informationally superior to the signal generated by any opponent.

We conclude this section by illustrating Theorems 4 and 5 in the following

examples.
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Example 1: First, consider the case where every strategy uses the same symmetric

information structure � � 	P Q  and hence Theorem 4 applies.  Moreover, there is a signal 
�

Y

with the property that 
� �

� 	 �� � 	 �P Y Q Y� � , that is, players can perfectly identify if the

opponent uses the same strategy. In that case, Theorem 4 is a special case of Theorem 3.

If a player uses strategy 
�
S  and meets a player who also uses 

�
S  then both players are

assigned the type 
�

Y .  Since 
� �

� 	 �� � 	 �P Y Q Y� �  the action taken by both players solves

MAX � 	 � 	
A !

B A C A
�

�

Note that, � 	 � 	B A C A�  is the social benefit of action A  and hence the outcome is efficient

in this case.  If a player uses a strategy other than 
�
S  then his opponent receives the signal

�
Y Yv .  Hence, � 	 �P Y �  and 

�
S  punishes the player by choosing the action that solves

MAX � 	 � 	 MIN � 	 � 	
A ! A !

B A C A B A C A
� �
� � � � �

Note that this action maximizes the payoff between the two players, as required by

Theorem 3.   Since the punishment action minimizes the sum of the player’s cost and of

the opponent’s benefit, the player is willing to incur a cost if it leads to a negative payoff

of an opponent who does not use 
�
S .

Example 2.  To the environment of Example 1, we add the strategy S , which can

masquerade as any other strategy.  Thus, a player using strategy S  cannot determine

whether the opponent uses S  or S , hence � \ � 	 � \ � 	Y S S Y S SQ Q�  for all signals �Y 9�

In addition, players who use S  do not receive informative signals about their opponents.

Hence, we can describe their information by a symmetric information structure � � 	P Q

with � 	 � 	P Y Q Y� .  The strategy S  is informationally dominant and hence we can apply

Theorem 5.  Since signals are not informative it follows that S  is a long-run stable

outcome if it takes the least cost action eA  for every signal realization.  In that case,

Theorem 5 implies that every strategy that is a long-run stable outcome must play the

least cost action.  Hence, the introduction of a strategy that successfully masquerades as

other strategies eliminates cooperation between players.

Example 3. This example serves to emphasize that 
�
S  need not be ½ dominant in the

ordinary sense.  Consider the environment of Theorem 5 and assume that 
�
S , the

informationally dominant long-run outcome is not constant.  Let S%  be a constant strategy

that always plays eA . Suppose, that there are signals that enable a strategy S  to identify
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S%  with certainty and choose an action that maximizes B .  Otherwise, S  chooses eA .  For

an appropriate choice of B , the strategy S%  does better than S  against � �
� �S S�  and

therefore S  is not ½ dominant.

Example 4: Consider a symmetric two-signal scenario, [���]9 �  and

��	 ��	 � ���P Q P P� � p .  If the signal is �Y �  then this is an indication that the two

players are using the same strategy whereas if the signal is �Y �  it is an indication that

the strategies are different. Suppose there are three actions [ �����]A � � ,
�� 	 � � 	 �B A A C A A AC� � � . This is a trading game with a cooperative action (�A � ), a

no-trade action ( �A � ), and a hostile action ( �A �� ). Both the hostile and the

cooperative action are costly for players, whereas the no-trade action is costless.   In this

example, we can apply Theorem 4 and distinguish the following cases. When

�
� �P

C�
�

,

then in the unique long run outcome all players to take the no-trade action.  When

�
� �P

C �
�

,

then in the unique long run outcome players choose the cooperative action when the

signal is  �  and the hostile action when the signal is � . When

� �
� � � �P P

C� �
� �

 ,

then in the unique long run outcome players take the no trade action when the signal is  0

and the hostile action when the signal is 1. In this case, the long run outcome is therefore

worse than the unique equilibrium of the normal form game. Players choose no trade and

hostility and do not realize any of the gains from trade.
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4. Conclusion

In conclusion, we offer an alternative interpretation of our model as describing the

evolution of interdependent preferences. The formulation is based on work by Gul and

Pesendorfer (2001).6

Consider the separable example and assume that when an individual takes action

A  his monetary payoff is

� 	 � 	I IB A C A� �

Hence, monetary payoffs depend on the opponent’s action only through the lump sum

� 	IB A� .  Suppose that the utility of a player depends both on his monetary payoff and on

his opponent’s monetary payoff and preferences.  The signal Y 9�  encapsulates the

information the player has about his opponent’s preference type.  The function S 3�

describes for a particular preference, the optimal choice from !  for every signal Y .

To re-interpret the evolutionary dynamic, assume that each period one player dies

and is replaced by a new player.  With probability #F  the new player is the offspring of

a player randomly selected from the existing population of players. With probability

� N#F F� �  the new player is the offspring of the most successful player in the

population.  In either case, the new player inherits the preference type of his parent.  We

can view this process as a version of the replicator dynamic in which the most successful

type reproduces with much larger probability than other types.   Finally, with probability
NF  the new player is assigned an arbitrary preference type at random.  This corresponds

to a mutation.

Our results show that evolution can be expected to select preferences that treat

opponents differently depending on their preferences.  In particular, in the long-run we

expect to find types that behave altruistically towards opponents with the same

preferences and spitefully towards opponents with different preferences. Casual

observation suggests that individuals indeed behave more altruistically when they can

“identify with” the beneficiary of their altruism.

A critical assumption is that preferences are observable at least with some

probability. As before, this assumption may be justified because preferences affect

                                                
6 Gul and Pesendorfer (2001) develop a canonical model of interdependent preferences for which a signal
space representation can be found.
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observable behavior in a variety of contexts unrelated to the game in question.  An

example used by Frank (1987) is that of a person who blushes upon telling a lie and

thereby reveals a disutility of dishonest behavior.  As Frank points out, a blusher will

have an advantage in situations that require trust.  Thus, it can be expected that evolution

endows honest types with behavioral traits that make their honesty observable.
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Appendix

Below we interpret N  as the measure describing the limit of the invariant

distributions of the perturbed ( �F � ) Markov process.

Let �N  be an irreducible invariant measure of the Markov process in which

�F � . Let X  be the set of mixed strategies in the state space M4  that this invariant

distribution gives positive weight to. We call such an X  an ergodic set. Let 8  be the set

of all such X .   Note that this is a set of sets. Let � 	3 T  denote the set of pure strategies

used with positive probability in T . First we establish some basic facts about 8 .

Lemma A1: The sets X  are disjoint. Each set consisting of a singleton pure profile

[ ]S � 8 . If � �T T X� � 8  then � 	 � �	3 3T T� .

Proof:  When �F �  we have the relative best-response dynamic in which in each

period one player switches with equal probability to one of the relative best-responses to

the current state. The sets X  are by definition minimal invariant sets under the relative

best-response dynamic. That these sets are disjoint is immediate from the definition. Pure

profiles are absorbing since no strategy can be used unless it is already in use. This means

that every set X  consisting of a single pure strategy is in 8 . To see that have

� 	 � �	3 3T T� , observe that the relative best-response dynamic cannot ever increase the

set of strategies in use. If there is a point � 	� � �	S 3 S 3T T� �  then the probability that

the best-response dynamic goes from T  to �T  is zero, which is inconsistent with the two

strategies lying in the same ergodic set.

ã

The third part of the Lemma means that for each X � 8  we may assign a unique

set of pure strategies � 	3 X  corresponding to � 	�3 T T X� .

To prove our results, we will use the characterization of N  given by Young

[1993].7 Let U  be a tree whose nodes are the set 8 . We denote by � 	U X  the unique

predecessor of X . An X -tree is a tree whose root is X . For any two points �X X � 8%

we define the resistance � � 	R X X%  as follows. First, a path from X  to X%  is a sequence of

points 
�

� � � 	 M

+
T T � 4K with 

�
T X� , 

+
T X� %  and 

�K
T
�

 reachable from 
K

T  by a

                                                
7 Although the standard convention in game theory is that a tree begins at the root, Young [1993] followed
the mathematical convention that it ends there. We have used the usual game-theoretic convention, so our
trees go the opposite direction of Young’s.
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single player changing strategy. If the change from 
K

T  to 
�K

T
�

 is a relative best-

response, the resistance of 
K

T  is 0; if the change is an imitation the resistance is 1; if the

change is an innovation the resistance is N . The resistance of a path is the sum of the

resistance of each point in the sequence. The resistance � � 	R X X%  is the least resistance of

any path from X  to X% . The resistance � 	R U  of the X -tree U  is the sum over non-root

nodes of � � � 		R X U X% % . The resistance of X , � 	R X  is the least resistance of any X -tree.

The following Theorem is proven in Young [1993].

Young’s Theorem: LIM FN N�  exists and � 	 �N X �  if and only if

� 	 MIN � 	R R
X

X X
�8

�
%

%

Remark: The set of X  for which � 	 �N X �  is called the stochastically stable set.

The basic tool for analyzing N  is tree surgery, by which we transform one tree

into another and compare the resistances of the two trees. Suppose that U  is an X -tree.

For any nodes X Xv%  we cut the X% -subtree separating the original tree into two trees;

one the X% -subtree and the other what is left over. This reduces the resistance by

� � � 		R X U X% % . If X)  is a node in either of the two trees, and eX  is the root of the other tree,

we may paste eX  to X)  by defining e� 	U X X� ) . This tree has the root of the tree

containing X) . The paste operation increases the resistance by �e� 	R X X) , so the new tree

has resistance � 	 �e� 	 � � � 		R R RU X X X U X� �) % % . These operations can be used to characterize

classes of least resistance trees, by showing certain operation do not increase the

resistance. They can also be used as below in proof by contradiction, showing that certain

trees cannot be least resistance because it is possible to cut and paste in such a way that

the resistance is reduced.

Theorem 1: LIM FN N� exists and � 	 �N T �  implies that T is a pure strategy.

Proof of Theorem 1: Existence of N  follows from Young’s theorem. Suppose that

� 	 �N X �  and that X  is not a singleton pure profile. Let U  be a least resistance X -tree.

Let [ ]SX �%  be a singleton pure strategy that is played with positive probability by

some T X� , that is, � 	S 3 X� . Cutting X%  and pasting the root X to it. Since X%  is a

singleton pure profile, it requires at least one innovation to go anywhere, so cutting

reduces the resistance by at least N . On the other hand, since T X�  and � 	 �T X �% , we

can go from X  to X%  by no more than M  imitations, pasting the root to X%  increases the



22

resistance by at most M . By the assumption of unlikely innovation, this implies that the

new tree has strictly less resistance than the old contradicting Young’s Theorem.

ã

Theorem 2: If M  is sufficiently large and S  beats the field then � 	 �SN � . If If M  is

sufficiently large and S weakly beats the field then � 	 �SN � . Moreover, if � 	 �SN �%

then � � � �
� � � �� � 	 � � 	 �U S S S U S S S� � � �% % % .

Proof: Consider first the strict case. Suppose that there is some other X  with � 	 �N X � .

By Theorem 1, e[ ]SX �  for some pure strategy eS . Let U  be the least resistance X -

tree. Since it is not the root, we may suppose that [ ]S  is attached to some X% , and

consider cutting it and pasting the root to it. It took at least one innovation plus, since S

beats any point in X% , more than ��M  imitations to get to X% , so the resistance is

reduced by strictly more than ��N M� . However, since S  beats eS  we can get from

e[ ]SX �  to [ ]S  with one innovation and no more than ��M  imitations.  So resistance

is strictly reduced contradicting Young’s Theorem.

In the weak case, we can only conclude that the resistance is not increased,

however, this implies that [ ]S  is at the root of a least-cost tree, which gives �[ ]	 �SN � .

If �[ ]	 �SN �%  and � � � �
� � � �� � 	 � � 	 �U S S S U S S S� � � v% % %  then S%  is not tied with S , so

S  weakly beats S%  by assumption. However, if S  weakly beats S%  and

� � � �
� � � �� � 	 � � 	 �U S S S U S S S� � � v% % %  then S  beats S% , which by the argument in the

previous paragraph implies that [ ]S%  is not the root of a least cost tree, so�[ ]	 �SN �% .

ã

Theorem 3: 
�

� 	 �SN � . If � 	 �SN �  then 
� �

� � 	� � 		 � � 	5 S Y S Y 5 A A�  and

� � 	� 	 � � � 		5 S Y A 5 A S Y�  for all Y  such that 
�

� \ � 	 �Y S SQ � .

Proof: We first show that 
�
S  weakly beats the field.  Suppose that 

�
S Sv . Let

�
� 	 �� 	S ST B B B� � � , then

� � �

�

� � � 		 � � � 		 � � 	 �� 	 � � 	� � 		

[�� 	 � � � 		 � � 	� 	] � � 	
Y 9

U S U S 5 A A 5 S Y S Y

5 A S Y 5 S Y A Y S S

T B T B B B

B B Q
�

� p � �

� � ��
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Since this expression is linear in B  to show that S  weakly beats the field, it suffices to

show that it is non-negative both for �
�B �  and �B � . When �

�B �  we have

< >

< >

�
�� � �

�
� �

� � � 		 � � � 		 � � 	 � �� 	� �� 		

MIN � � �	 � �� 	
A !

U S U S 5 A A 5 S Y S Y

5 A A 5 A A

T B T B

�

� p �

� �

The first term is non-negative by the definition of A ; the second term is non-negative by

Assumption 3.  For �B � , we have

� �
� � � 		 � � � 		 � � 	 MAX � �� 	

A !
U S U S 5 A A 5 A AT B T B

�
� p �

Assumption 3 implies � � �	 � �� 	5 A A 5 A Ap  for all �A  and Assumption 2 implies

� � 	 MIN[ � � �	� � �� 	]5 A A 5 A A 5 A Ap .  Hence, it follows that � � 	 � �� 	 �5 A A 5 A A� p  for

all �A !�  which shows that 
�
S  weakly beats the field.  Theorem 2 therefore implies that

�
� 	 �SN �  and that if � 	 �SN �  then

< >

� �
� ��

�
�

�
� �

� � � � 		 � � � 		

� � 	 � � 	

[ � � � 		 � � 	� 	] � � 	
Y 9

U S U S

5 A A 5 A A

5 A S Y 5 S Y A Y S S

T T

Q
�

� �

p �

� ��

From the definition of �A A  and the expression above, we see that this is possible only if

� � 	 � � 	5 A A 5 A A�  and � � 	� 	 � � � 		5 S Y A 5 A S Y�  for all Y  with 
�

� � 	 �Y S SQ � .

ã

Theorem 4: � 	 �SN �  if and only if 
�

� 	 � 	S Y S Y�  for all Y 9� .

Proof:  Theorem 4 follows from Theorem 5 below since the action that defines 
�
� 	S Y  is

unique.

ã

Theorem 5: If 
�
S  informationally dominant then,

�
� 	 �SN � . Moreover, for every

strategies S  with � 	 �SN �  we have 
� �

� � 	 � � 	U S S U S S�  and 
� �

� � 	 � � 	U S S U S S� .

Proof:  We first show that 
�
S  weakly beats the field. Let 

�
� 	 �� 	S ST B B B� � �  for

some S 3� . We must show that 
�

� � � 		 � � � 		 �U S U ST B T B� p  for ;�����	B � . Since
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�
� � � 		 � � � 		U S U ST B T B�  is linear in B  it suffices to show that it is non-negative at both

���B �  and �B � .

We may write the utility difference between 
�
S  and S  at ���B �  as

< > < >

< > < >

< >

< >

� �
� ��

� �

� �

� �

� � � 		 � � � 		

�
[ � 	 � 	 � � 		 � 	 � 	 � � 		

�
� \ � 	 � \ � 	 � � 		 � \ � 	 � \ � 	 � � 		]

�
[ � 	 � 	 � � 		 � � 	 � 		 � � 		

�
� 	 � 	 � � 		 � � 	 � 		

Y 9

Y 9

ZYZ 9

U S U S

P Y Q Y B S Y P Y Q Y C S Y

Y S S Y S S B S Y Y S S Y S S C S Y

P Y Q Y B S Y P Y Q Y C S Y

P Y Q Y B S Z P Y Q Y C

T T

Q Q Q Q

M

�

�

�

� �

� � �

� � � � �

� � �

� � � �

�

�
� 	 


< >

< >	 


� �

� � 		 ]

�
� 	 � 	 � � 		 � � 	 � 		 � � 		

�
� 	 � 	 � � 		 � � 	 � 		 � � 		 �

Y 9

ZYZ : Y 9

S Z

P Y Q Y B S Y P Y Q Y C S Y

P Y Q Y B S Z P Y Q Y C S ZM

�

� �

�

� � �

� � � � p

�
� �

where the last inequality follows since 
�
� 	S Y  maximizes

< > < >� 	 � 	 � 	 � 	 � 	 � 	P Y Q Y B A P Y Q Y C A� � �

and �ZYZ 9
M

�
�� .

Next we consider the case �B � . In the case of Theorem 6, let

�� 	 � \ � �	Q Y Y S SQ� . We may write the utility difference as

	 
 	 

�

� � �

� �

� � ��		 � � ��		

[� � 	 � � 		 � � 		 � 	 � � 		 � � 		 ]

[� � 	 � 		 � � 		 � 	 � � 		]

Y 9

Y 9

U S U S

P Y B S Y C S Y Q Y B S Y C S Y

P Y Q Y B S Y P Y C S Y

T T

�

�

� �

� � � p

� �

�
�

where the inequality follows from � 	 �C A p .  Recall that there is an action eA  with

e� 	 �C A �  and therefore, by the definition of 
�
S

	 
 	 
 	 


	 

� � � �

� 	 � 	 � � 		 � 	 � � 		 � 	 � 	 � � 		 � 	 � 	 � � 		

e� 	 � 	 � 	

P Y Q Y B S Y P Y C S Y P Y Q Y B S Y P Y Q Y C S Y

P Y Q Y B A

� � p � � �

p �

Hence,

	 

�

e� � ��		 � � ��		 � 	 � 	 � 	 �
Y 9

U S U S P Y Q Y B AT T
�

� p � ��



25

 where the last equality follows from � 	 � 	 �P Y Q Y� �� � .  This shows that 
�
S

weakly beats the field.

 When � 	 �SN �  then it follows that

< >

< >	 


� �
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�

Since 
�
� 	S Y  is the unique optimal action it follows that for �

ZY
M � , 

�
� 	 � 	S Z S Y�  and

hence
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An analogous argument shows that 
� �

� � 	 � � 	U S S U S S� .
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